Skip to main content
Log in

Study of charge transport in P3HT:SiNW-based photovoltaic devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hybrid devices based on silicon nanowires (SiNWs) dispersed in a conjugated polymer poly(3-hexylthiophene) P3HT thin films have been realized. The carrier transport mechanism in inorganic/organic hybrid nancocomposites consisting of SiNW dispersed in P3HT layer was investigated by using IV characteristics and impedance spectroscopy measurements. The conduction mechanism in these hybrid nanocomposites has been identified to be thermionic emission at the interfaces. The electrical parameters of the structure have been investigated by modelization of the IV characteristics using an electrical equivalent circuit and have been extracted for the different SiNW volume ratios. The barrier height, the series resistance and the shunt resistance values of the diodes have been calculated as about 0.9 eV, several kΩ and several MΩ, respectively. The diode behaves as non-ideal one because of the series resistance and the Donor/Acceptor interface layer. The impedance spectroscopy study, in the frequency range 100 Hz–100 kHz, shows a typical behavior of disordered materials and indicative of a hopping transport in the investigated temperature range. The dc conductivity follows the Arrhenius law with an activation energy transition from 8.4 to 55.8 meV at about 294 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Dridi, V. Barlier, H. Chaabane, J. Davenas, H. Ben Ouada, Nanotechnology 19, 375201 (2008)

    Article  Google Scholar 

  2. B. Reeja-Jayan, A. Manthiram, Solar Energy Materials & Solar Cells 94, 907–914 (2010)

    Article  Google Scholar 

  3. J.C. Nolasco, R. Cabré, J. Ferré-Borrull, L.F. Marsal, M. Estrada, J. Pallarès, Journal of Applied Physics 107, 044505 (2010)

    Article  ADS  Google Scholar 

  4. A.B. Daniel, M.O. Rosui, G.M. George, Organic Semiconductors in Sensor Applications. Springer Series in Materials Science (2008)

    Google Scholar 

  5. A. Papadimitratos, A. Amassian, A.S. Killampalli, J.L. Mack, G.G. Malliaras, J.R. Engstrom, Applied Physics A: Materials Science & Processing 95(1), 29–35 (2009)

    Article  ADS  Google Scholar 

  6. J.A. Ayllon, M.L. Cantu, Applied Physics A: Materials Science & Processing 95(1), 249–255 (2009)

    Article  ADS  Google Scholar 

  7. G. Wang, S. Qian, J. Xu, W. Wang, X. Liu, X. Lu, F. Li, Physica B 279, 116–119 (2000)

    Article  ADS  Google Scholar 

  8. J. Yang, K.C. Gordon, Chem. Phys. Lett. 375, 649–654 (2003)

    Article  ADS  Google Scholar 

  9. A. Rouis, R. Mlika, J. Davenas, H. Ben Ouada, I. Bonnamour, N. Jaffrezic-Renault, J. Electro. Chem 601, 29–38 (2007)

    Article  Google Scholar 

  10. K.S. Chou, K.C. Huang, H.H. Lee, Nanotechnology 16, 779–784 (2005)

    Article  ADS  Google Scholar 

  11. M. Skompska, Synth. Met. 160, 1–15 (2010)

    Article  Google Scholar 

  12. H. Zhong, Z. Jingchang, Y. Xiuying, C. Weiliang, Synth. Met. 160, 2648–2652 (2010)

    Article  Google Scholar 

  13. W. Leeyih, J. Jr-Shian, L. Yi-Jun, R. Syang-Peng, Synth. Met. 155, 677–680 (2005)

    Article  Google Scholar 

  14. H. Arami, M. Mazloumi, R. Khalifehzadeh, S.K. Sadrnezhaad, Mater. Lett. 61, 4559–4561 (2007)

    Article  Google Scholar 

  15. A. Malinauskas, J. Malinauskiene, A. Ramanavicius, Nanotechnology 16, R51–R62 (2005)

    Article  ADS  Google Scholar 

  16. M. Kim, B.H. Jeon, J.Y. Kim, J.H. Choi, Synth. Met. 135–136, 743–744 (2003)

    Article  Google Scholar 

  17. J. Cheng, S. Wang, X.W. Li, Y. Yan, S. Yang, C.L. Yang, J.N. Wang, W.K. Ge, Chem. Phys. Lett. 333, 375–380 (2001)

    Article  ADS  Google Scholar 

  18. A.W. Tang, F. Teng, H. Jin, Y.H. Gao, Y.B. Hou, C.J. Liang, Y.S. Wang, Mater. Lett. 61, 2178–2181 (2007)

    Article  Google Scholar 

  19. V. Svreek, I. Turkevych, M. Kondo, Nanoscale Res. Lett. 4, 1389–1394 (2009)

    Article  ADS  Google Scholar 

  20. C. Dridi, H. Chaaben, J. Davenas, in International Conference on Conducting Materials, ICoCoM 2010, 3–7 November 2010, Sousse, Tunisia (2010)

    Google Scholar 

  21. F. Yakuphanoglu, R.S. Anand, Synthetic Metals 160, 2250–2254 (2010)

    Article  Google Scholar 

  22. Y. Lou, Z. Wang, S. Naka, H. Okada, Physics Procedia 14, 204 (2011) –208

    Article  Google Scholar 

  23. H. Yang, T.J. Shin, L. Yang, K. Cho, C.Y. Ryu, Z. Bao, Adv. Funct. Mater. 15, 671–676 (2005)

    Article  Google Scholar 

  24. K.Q. Peng, S.T. Lee, Adv. Mater. 23, 198–215 (2011)

    Article  Google Scholar 

  25. S.B. Dkhil, R. Bourguiga, J. Davenas, D. Cornu, Materials Chemistry and Physics 132, 284–291 (2012)

    Article  Google Scholar 

  26. J. Davenas, G. Boiteux, D. Cornu, A. Ryback, Synth. Metals 161, 2623–2627 (2012)

    Article  Google Scholar 

  27. G. Goncher, L. Noice, R. Solanki, Journal of Experimental Nanoscience 3, 77–86 (2008)

    Article  ADS  Google Scholar 

  28. R.T. Tung, Phys. Rev. B 45(13), 509 (1992)

    ADS  Google Scholar 

  29. J.H. Werner, Appl. Phys. A 47, 291 (1988)

    Article  ADS  Google Scholar 

  30. R.Q. Zhang, Y. Lifshitz, S.T. Lee, Advanced Materials 15(7–8), 635–640 (2003)

    Article  Google Scholar 

  31. X. Fan, G.J. Fang, P.L. Qin, F. Cheng, X.Z. Zhao, Applied Physics A: Materials Science & Processing 105(4), 1003–1009 (2011)

    Article  ADS  Google Scholar 

  32. Y. Liu, M.S. Liu, A.K.Y. Jen, Acta Polym. 50, 105–108 (1999)

    Article  Google Scholar 

  33. M. Al-Ibrahima, H. Klaus Rotha, U. Zhokhavets, G. Gobsch, S. Sensfuss, Solar Energy Materials & Solar Cells 85, 13–20 (2005)

    Google Scholar 

  34. P.T. Wu, F.S. Kim, R.D. Champion, S.A. Jenekhe, Macromolecules 41, 7021–7028 (2008)

    Article  ADS  Google Scholar 

  35. N.S. Sariciftci, Primary Photoexcitations in Conjugated Polymers: Molecular Excitons vs. Semiconductor Band Model (World Scientific, Singapore, 1997)

    Google Scholar 

  36. M.A. Lampert, P. Mark, Current Injection in Solids (Academic Press, New York, 1970)

    Google Scholar 

  37. S.H. Kim, K.H. Choi, H.M. Lee, D.H. Hwang, M.D. Lee, H. Yong Chu, T. Zyung, J. Appl. Phys. 87, 882–888 (2000)

    Article  ADS  Google Scholar 

  38. D. Ma, I. Hümmelen, X. Jing, Z. Hong, L. Wang, X. Zhao, F. Wang, F. Karasz, J. Appl. Phys. 87, 312–316 (2000)

    Article  ADS  Google Scholar 

  39. M. Bouzitoun, C. Dridi, R. Ben Chaabane, H. Ben Ouada, N. Jaballah, H. Gam, M. Majdoub, Sci. and Technol. Adv. Mater. 7, 772–779 (2006)

    Article  ADS  Google Scholar 

  40. A. Rouis, C. Dridi, R. Ben Chaabane, J. Davenas, S. Aeiyach, H. Ben Ouada, I. Dumazet-Bonnamour, H. Halouani, Mater. Sci. Eng. C 26, 240–246 (2006)

    Article  Google Scholar 

  41. C. Dridi, M. Benzarti-Ghédira, F. Vocanson, R. Ben Chaabane, J. Davenas, H. Ben Ouada, Semicond. Sci. Technol 24, 105007 (2009)

    Article  ADS  Google Scholar 

  42. G. Tessema, Applied Physics A: Materials Science & Processing 106(1), 53–57 (2012)

    Article  ADS  Google Scholar 

  43. S. Marchantand, P.J.S. Foot, Journal of Materials Science: Materials in electronics 6, 144–148 (1995)

    Google Scholar 

  44. F. Garten, J. Vrijmoeth, A.R. Schlatmann, R.E. Gill, T.M. Klapwijk, G. Hadziioannou, Synthetic Metals 76, 85–89 (1996)

    Article  Google Scholar 

  45. S.M.S. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  46. E.H. Rodherick, Metal Semiconductor Contacts (Clarendon Press, Oxford, 1978)

    Google Scholar 

  47. C.Y. Kwong, W.C.H. Choy, A.B. Djurisic, P.C. Chui, K.W. Cheng, W.K. Chan, Nanotechnology 15, 1156–1161 (2004)

    Article  ADS  Google Scholar 

  48. C. Waldauf, P. Schilinsky, J. Hauch, C. Brabec, Thin Solid Films 451–452, 503–507 (2004)

    Article  Google Scholar 

  49. F. Michelotti, F. Borghese, M. Bertolotti, E. Cianci, V. Foglietti, Synth. Met. 111/112, 105–108 (2000)

    Article  Google Scholar 

  50. A.K. Jonscher, Nature 256, 673 (1977)

    Article  ADS  Google Scholar 

  51. J. Obrzut, K.A. Page, Physical Review B 80, 195211 (2009)

    Article  ADS  Google Scholar 

  52. D. Zhu, J. Zhang, C. Xu, M. Matsuo, Synthetic Metals 161, 1820–1827 (2011)

    Article  Google Scholar 

  53. A. Dey, S. De, A. De, S.K. De, Nanotechnology 15, 1277 (2004)

    Article  ADS  Google Scholar 

  54. M.M. EL-Nahass, A.F. EL-Deeb, F. Abd-El-Salam, Organic Electronics 7, 261–270 (2006)

    Article  Google Scholar 

  55. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979)

    Google Scholar 

  56. L.K. Pan, et al., J. Appl. Phys. 94, 2695 (2003)

    Article  ADS  Google Scholar 

  57. L. Pan, Z. Sun, J. of Phys. and Chem. of Solids 70, 1113 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherif Dridi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azizi, S., Braik, M., Dridi, C. et al. Study of charge transport in P3HT:SiNW-based photovoltaic devices. Appl. Phys. A 108, 99–106 (2012). https://doi.org/10.1007/s00339-012-6991-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6991-6

Keywords

Navigation