Skip to main content
Log in

Electrophysical and Photoelectric Properties of Poly-3-Hexylthiophene Modified with Silicon Nanoparticles

  • POLYMER, BIOORGANIC, AND HYBRID NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This work is devoted to the determination of the mechanisms of generation, transfer, and recombination of charge carriers in a hybrid organic–inorganic system—a polymer poly-3-hexylthiophene with silicon nanoparticles (nc-Si). It is shown that by varying the nc-Si concentration, it is possible to change the conductivity and photoconductivity of such a system within a fairly wide range, achieving optimal values for applications in optoelectronics (photodetectors, solar cells, etc.). A model is proposed making it possible to describe the photoelectric properties of poly-3-hexylthiophene modified with nc-Si from a single point of view. The model assumes a Gaussian distribution of the density of electronic states along which the hopping transport of charge carriers occurs. The influence of nc-Si mainly affects the parameters of the Gaussian distribution of the density of electronic states and the position of the Fermi level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. X. Wang, W. Song, B. Liu, et al., Adv. Funct. Mater. 23, 1202 (2013). https://doi.org/10.1002/adfm.201201786

    Article  CAS  Google Scholar 

  2. Y. Hsiao, T. Fang, L. Ji, et al., Electrochem. Commun. 18, 4 (2012). https://doi.org/10.1016/j.elecom.2012.01.030

    Article  CAS  Google Scholar 

  3. S. Günes and N. S. Sariciftci, Inorg. Chim. Acta 361, 581 (2008). https://doi.org/10.1016/j.ica.2007.06.042

    Article  CAS  Google Scholar 

  4. M. C. Wu, Y. Y. Lin, S. Chen, et al., Chem. Phys. Lett. 468, 64 (2009). https://doi.org/10.1016/j.cplett.2008.11.080

    Article  CAS  Google Scholar 

  5. S. Venkataprasad Bhat, A. Govindaraj, and C. Rao, Sol. Energy Mater. Sol. Cells 95, 2318 (2011). https://doi.org/10.1016/j.solmat.2011.03.047

    Article  CAS  Google Scholar 

  6. W. Zhang, Y. Xu, H. Wang, et al., Sol. Energy Mater. Sol. Cells 95, 2880 (2011). https://doi.org/10.1016/j.solmat.2011.06.005

    Article  CAS  Google Scholar 

  7. M. Wright and A. Uddin, Sol. Energy Mater. Sol. Cells 107, 87 (2012). https://doi.org/10.1016/j.solmat.2012.07.006

    Article  CAS  Google Scholar 

  8. S. Dayneko, A. Tameev, M. Tedoradze, et al., Appl. Phys. Lett. 103, 063302 (2013). https://doi.org/10.1063/1.4817722

    Article  CAS  Google Scholar 

  9. S. Dayneko, P. Linkov, I. Martynov, et al., Phys. E (Amsterdam, Neth.) 79, 206 (2016). https://doi.org/10.1016/j.physe.2016.01.007

  10. P. R. Berger and M. Kim, J. Renewable Sustainable Energy 10, 013508 (2018). https://doi.org/10.1063/1.5012992

    Article  CAS  Google Scholar 

  11. P. Vanlaeke, A. Swinnen, I. Haeldermans, et al., Sol. Energy Mater. Sol. Cells 90, 2150 (2006). https://doi.org/10.1016/j.solmat.2006.02.010

    Article  CAS  Google Scholar 

  12. M. T. Dang, L. Hirsch, and G. Wantz, Adv. Mater. 23, 3597 (2011). https://doi.org/10.1002/adma.201100792

    Article  CAS  Google Scholar 

  13. A. R. Tameev, A. R. Yusupov, A. V. Vannikov, et al., Prot. Met. Phys. Chem. Surf. 54, 1076 (2018). https://doi.org/10.1134/S2070205118060230

    Article  CAS  Google Scholar 

  14. A. Supriyanto, A. Mustaqim, M. Agustin, et al., IOP Conf. Ser. Mater. Sci. Eng. 107, 1 (2016). https://doi.org/10.1088/1757-899X/107/1/012050

  15. E. Hemaprabha, U. K. Pandey, K. Chattopadhyay, and P. C. Ramamurthy, Sol. Energy 173, 744 (2019). https://doi.org/10.1016/j.solener.2018.08.020

    Article  CAS  Google Scholar 

  16. S. Kim, K. Jeon, J. C. Lee, et al., Appl. Phys. Express 5, 022302 (2012). https://doi.org/10.1143/APEX.5.022302

    Article  CAS  Google Scholar 

  17. S. Zhao, X. Pi, C. Mercier, et al., Nano Energy 26, 305 (2016). https://doi.org/10.1016/j.nanoen.2016.05.040

    Article  CAS  Google Scholar 

  18. H. Bassler, Phys. Status Solidi B 175 (15) (1993). https://doi.org/10.1002/pssb.2221750102

  19. H. Bassler, Phys. Status Solidi B 107 (9) (1981). https://doi.org/10.1002/pssb.2221070102

  20. S. D. Baranovskii, Phys. Status Solidi Basic Res. 251, 487 (2014). https://doi.org/10.1002/pssb.201350339

    Article  CAS  Google Scholar 

  21. S. R. Saitov, D. V. Amasev, A. R. Tameev, and A. G. Kazanskii, Org. Electron. 86, 105889 (2020). https://doi.org/10.1016/j.orgel.2020.105889

    Article  CAS  Google Scholar 

  22. S. D. Baranovskii, Phys. Status Solidi Appl. Mater. Sci. 215 (12) (2018). https://doi.org/10.1002/pssa.201700676

  23. J. C. Maxwell Garnett, Proc. R. Soc. London 203, 385 (1904). https://doi.org/10.1098/rsta.1904.0024

    Article  Google Scholar 

  24. D. A. G. Bruggeman, Ann. Phys. (Leipzig) 416, 636 (1935). https://doi.org/10.1002/andp.19354160705

    Article  Google Scholar 

  25. S. Niesar, R. Dietmueller, H. Nesswetter, et al., Phys. Status Solidi Appl. Mater. Sci. 206, 2775 (2009). https://doi.org/10.1063/1.3086299

    Article  CAS  Google Scholar 

  26. O. I. Eroshova, P. A. Perminov, S. V. Zabotnov, et al., Crystallogr. Rep. 57, 831 (2012). https://doi.org/10.1134/S1063774512030066

    Article  CAS  Google Scholar 

  27. T. Y. Kim, N. M. Park, K. H. Kim, et al., Appl. Phys. Lett. 85, 5355 (2004). https://doi.org/10.1063/1.1814429

    Article  CAS  Google Scholar 

  28. D. Rep, B. H. Huisman, E. J. Meijer, et al., Mater. Res. Soc. Symp. 660, JJ7.9.1 (2001). https://doi.org/10.1557/PROC-660-JJ7.9

  29. J. Kim, S. Nam, J. Jeong, et al., J. Korean Phys. Soc. 61, 234 (2012). https://doi.org/10.3938/jkps.61.234

    Article  CAS  Google Scholar 

  30. C. Deibel, D. Mack, J. Gorenflot, et al., Phys. Rev. B 81 (8), 1 (2010). https://doi.org/10.1103/PhysRevB.81.085202

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment of the Educational and Methodological Center for Lithography and Microscopy of Moscow State University was used in the work.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-23005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Savin.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, K., Forsh, P., Kazanskiy, A. et al. Electrophysical and Photoelectric Properties of Poly-3-Hexylthiophene Modified with Silicon Nanoparticles. Nanotechnol Russia 15, 770–777 (2020). https://doi.org/10.1134/S1995078020060178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020060178

Navigation