Skip to main content
Log in

Piezoelectric performance of fluor polymer sandwiches with different void structures

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Film sandwiches, consisting of two outer layers of fluoroethylenepropylene and one middle layer of patterned porous polytetrafluoroethylene, were prepared by patterning and fusion bonding. Contact charging was conducted to render the films piezoelectric. The critical voltage to trigger air breakdown in the inner voids in the fabricated films was investigated. The piezoelectric d 33 coefficients were measured employing the quasistatic method and dielectric resonance spectrum. The results show that the critical voltage for air breakdown in the inner voids is associated with the void microstructure of the films. For the films with patterning factors of 0%, 25% and 44%, the critical values are 300, 230 and 230 kV/cm, respectively. With an increase in the patterning factor, both the piezoelectric d 33 coefficients determined from the dielectric resonance spectra and those determined from quasistatic measurements increase, which might be due to a decrease in Young’s modulus for the films. The nonlinearity of d 33 becomes increasingly obvious as the patterning factor increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 6
Fig. 5
Fig. 7

Similar content being viewed by others

References

  1. S. Bauer, R. Gerhard-Multhaupt, G.M. Sessler, Phys. Today 57(2), 37 (2004)

    Article  Google Scholar 

  2. R. Gerhard-Multhaupt, IEEE Trans. Dielectr. Electr. Insul. 9, 850 (2002)

    Article  Google Scholar 

  3. S. Bauer, IEEE Trans. Dielectr. Electr. Insul. 13, 953 (2006)

    Google Scholar 

  4. X. Qiu, J. Appl. Phys. 108, 011101 (2010)

    Article  ADS  Google Scholar 

  5. W. Künstler, Z. Xia, T. Weinhold, A. Pucher, R. Gerhard-Multhaupt, Appl. Phys. A 70, 5 (2000)

    Article  ADS  Google Scholar 

  6. G.S. Neugschwandtner, R. Schwödiauer, S. Bauer-Gogonea, S. Bauer, Appl. Phys. A 70, 1 (2000)

    Article  ADS  Google Scholar 

  7. R.A.C. Altafim, H.C. Basso, R.A.P. Altafim, L. Lima, C.V. de Aquimo, L. Goncalves Neto, R. Gerhard-Multhaupt, IEEE Trans. Dielectr. Electr. Insul. 13, 979 (2006)

    Google Scholar 

  8. X. Zhang, J. Hillenbrand, G.M. Sessler, J. Appl. Phys. 101, 054114 (2007)

    Article  ADS  Google Scholar 

  9. Z. Hu, H. Von Seggern, J. Appl. Phys. 99, 024102 (2006)

    Article  ADS  Google Scholar 

  10. J. Huang, X. Zhang, Z. Xia, X. Wang, J. Appl. Phys. 103, 084111 (2008)

    Article  ADS  Google Scholar 

  11. E. Saarimäki, M. Paajanen, A. Savijärvi, H. Minkkinen, M. Wegener, O. Voronina, R. Schulze, W. Wirges, R. Gerhard-Multhaupt, IEEE Trans. Dielectr. Electr. Insul. 13, 963 (2006)

    Google Scholar 

  12. W. Wirges, M. Wegener, O. Voronina, L. Zirkel, R. Gerhard-Multhaupt, Adv. Funct. Mater. 17, 324 (2007)

    Article  Google Scholar 

  13. P. Fang, M. Wegener, W. Wirges, R. Gerhard, Appl. Phys. Lett. 90, 192908 (2007)

    Article  ADS  Google Scholar 

  14. X. Zhang, X. Wang, G. Cao, D. Pan, Z. Xia, Appl. Phys. A 97, 859 (2009)

    Article  ADS  Google Scholar 

  15. R.A.P. Altafim, X. Qiu, W. Wirges, R. Gerhard, R.A.C. Altafim, H.C. Basso, W. Jenninger, J. Wagner, J. Appl. Phys. 106, 014106 (2009)

    Article  ADS  Google Scholar 

  16. X. Zhang, G. Cao, Z. Sun, Z. Xia, J. Appl. Phys. 108, 064113 (2010)

    Article  ADS  Google Scholar 

  17. Z. Sun, X. Zhang, Z. Xia, X. Qiu, W. Wirges, R. Gerhard, C. Zeng, C. Zhang, B. Wang, Appl. Phys. A 105, 197 (2011)

    Article  ADS  Google Scholar 

  18. S. Zhukov, S. Fedosov, H. von Seggern, J. Phys. D, Appl. Phys. 44, 105501 (2011)

    Article  ADS  Google Scholar 

  19. H. von Seggern, S. Zhukov, S. Fedosov, IEEE Trans. Dielectr. Electr. Insul. 18, 49 (2011)

    Article  Google Scholar 

  20. R.A.P. Altafim, W. Wirges, X. Qiu, R. Gerhard, H.C. Basso, R.A.C. Altafim, W. Jenninger, J. Wagner, in The 10th International Conference on Solid Dielectrics (ICSD), Potsdam, Germany (2010), C1-2

    Google Scholar 

  21. Z. An, J. Yao, M. Mao, Y. Zhang, Z. Xia, J. Electrost. 68, 523 (2010)

    Article  Google Scholar 

  22. N.M. Jacobs, X. Qiu, R. Gerhard, in The 14th International Symposium on Electrets, Montpellier, France (2011), pp. 179–180

    Google Scholar 

  23. G.S. Neugschwandtner, R. Schwödiauer, M. Vieytes, S. Bauer-Gogonea, S. Bauer, J. Hillenbrand, R. Kressmann, G.M. Sessler, M. Paajanen, J. Lekkala, Appl. Phys. Lett. 77, 3827 (2000)

    Article  ADS  Google Scholar 

  24. A. Mellinger, IEEE Trans. Dielectr. Electr. Insul. 10, 842 (2003)

    Article  Google Scholar 

  25. R. Schwödiauer, I. Graz, S. Bauer, in IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference (2004), pp. 134–137

    Google Scholar 

  26. G.M. Sessler, J. Hillenbrand, Appl. Phys. Lett. 75, 3405 (1999)

    Article  ADS  Google Scholar 

  27. F. Paschen, Ann. Phys. (Leipz.) 273(5), 69 (1889)

    Article  ADS  Google Scholar 

  28. X. Zhang, J. Hillenbrand, G.M. Sessler, S. Haberzettl, K. Lou, Fluoroethylenepropylene ferroelectrets with patterned microstructure and high, thermally stable piezoelectricity. Appl. Phys. A (2012, in press)

  29. M. Dansachmüller, R. Schwödiauer, S. Bauer-Gogonea, S. Bauer, M. Paajanen, J. Raukola, Appl. Phys. Lett. 86, 031910 (2005)

    Article  ADS  Google Scholar 

  30. E. Tuncer, M. Wegener, R. Gerhard-Multhaupt, J. Electrost. 63, 21 (2005)

    Article  Google Scholar 

  31. X. Zhang, J. Hillenbrand, G.M. Sessler, Appl. Phys. Lett. 85, 1226 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Gerhard M. Sessler (Darmstadt University of Technology, Germany) for stimulating discussions. The financial support from Natural Science Foundation of China (NSFC, 50873078 and 51173137) and State Key Laboratory of Electrical Insulation and Power Equipment at Xi’an Jiaotong University (EIPE11203) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, K., Zhang, X. & Xia, Z. Piezoelectric performance of fluor polymer sandwiches with different void structures. Appl. Phys. A 107, 613–620 (2012). https://doi.org/10.1007/s00339-012-6839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6839-0

Keywords

Navigation