Skip to main content
Log in

Polymer Piezoelements Based on Porous Polyvinylidene Fluoride Films and Contact Electrode Polyaniline Layers

  • POLYMERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The preparation method to obtain the new hybrid piezoelectric systems is developed. In it, layer-by-layer oxidative polymerization of aniline is performed in situ on porous polyvinylidene fluoride films prepared by melt extrusion. The formation of conducting form of polyaniline (i.e., emeraldine salt) is confirmed by IR spectroscopy. The samples with double polyaniline layers exhibit a higher electrical conductivity than single-layer ones, with the electrical conductivity growing as the degree of substrate’s orientation increases. The observed effect is related to improved uniformity and structural ordering of the conducting layer, as shown by scanning electron microscopy. The obtained hybrid systems exhibit a higher mechanical strength, elastic modulus, and break elongation, compared to the substrate. The electric and piezoactive properties of prepared samples are studied by cyclic voltammetry and by measuring their piezoelectric modulus; the deposited polyaniline layers served as the contact electrode material in these measurements. The values for piezoelectric coefficients were measured in variuos directions of applied mechanical load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. Bar-Cohen and Q. Zhang, MRS Bull. 33, 173 (2008).

    Article  Google Scholar 

  2. A. J. Lovinger, Science (Washington, DC, U. S.) 220, 1115 (1983).

    Article  ADS  Google Scholar 

  3. E. Fukada, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1277 (2000).

    Article  Google Scholar 

  4. A. Salimi and A. A. Yousefi, Polym. Test. 22, 699 (2003).

    Article  Google Scholar 

  5. Y. M. Chang, J. S. Lee, and K. J. Kim, Solid State Phenom. 124, 299 (2007).

    Article  Google Scholar 

  6. P. Martins, A. C. Lopes, and S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014).

    Article  Google Scholar 

  7. V. V. Kochervinskii, Russ. Chem. Rev. 65, 865 (1996).

    Article  ADS  Google Scholar 

  8. I. Yu. Dmitriev, V. K. Lavrentyev, and G. K. Elyashevich, Polymer Sci., Ser. A 48, 272 (2006).

    Article  Google Scholar 

  9. I. Yu. Dmitriev, I. S. Kuryndin, V. K. Lavrentyev, and G. K. Elyashevich, Phys. Solid State 59, 1041 (2017).

    Article  ADS  Google Scholar 

  10. I. Yu. Dmitriev, I. S. Kuryndin, and G. K. Elyashevich, RF Patent No. 2635804 (2017).

  11. G. K. Elyashevich, I. S. Kuryndin, I. Yu. Dmitriev, V. K. Lavrentyev, N. N. Saprykina, and V. Bukošek, Chin. J. Polymer Sci. 37, 1283 (2019). https://doi.org/10.1007/s10118-019-2284-2

    Article  Google Scholar 

  12. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).

    MATH  Google Scholar 

  13. G. K. Elyashevich, E. Yu. Rozova, and E. A. Karpov, RF Patent No. 2140936 (1997).

  14. I. S. Kuryndin, V. K. Lavrentyev, V. Bukošek, and G. K. Elyashevich, Polymer Sci., Ser. A 57, 717 (2015).

    Article  Google Scholar 

  15. A. Stolarczyk, G. K. Elyashevich, E. Yu. Rozova, and M. Lapkowski, Polymer Sci., Ser. A 47, 326 (2005).

    Google Scholar 

  16. A. L. Buyanov, L. G. Revel’skaya, E. Yu. Rosova, and G. K. Elyashevich, J. Appl. Polym. Sci. 94, 1461 (2004).

    Article  Google Scholar 

  17. G. K. Elyashevich, E. Yu. Rosova, D. V. Andreeva, G. A. Polotskaya, M. Trhova, and Z. Pientka, J. Appl. Polym. Sci. 97, 1410 (2005).

    Article  Google Scholar 

  18. A. Bobrovskii, V. P. Shibaev, G. K. Elyashevich, E. Yu. Rosova, A. Shimkin, V. Shirinyan, and K.‑L. Cheng, Polym. Adv. Technol. 21, 100 (2010).

    Article  Google Scholar 

  19. G. K. Elyashevich and M. A. Smirnov, Polymer Sci., Ser. A 54, 900 (2012).

    Article  Google Scholar 

  20. G. K. Elyashevich, I. S. Kuryndin, and E. Yu. Rosova, Polym. Adv. Technol. 13, 725 (2002).

    Article  Google Scholar 

  21. M. Liu, J. Li, and Z. Guo, J. Colloid Interface Sci. 467, 261 (2016).

    Article  ADS  Google Scholar 

  22. Y. Fu, H. He, T. Zhao, Y. Dai, W. Han, J. Ma, L. Xing, Y. Zhang, and X. Xue, Nano-Micro Lett. 10, 76 (2018). https://doi.org/10.1007/s40820-018-0228-y

    Article  ADS  Google Scholar 

  23. C. S. Lee, J. Joo, S. Han, J. H. Lee, and S. K. Koh, J. Korean Phys. Soc. 45, 747 (2004).

    Google Scholar 

  24. R. Minato, G. Alıcı, S. McGovern, and G. Spinks, Proc. SPIE 6524, 65241J (2007).

    Article  ADS  Google Scholar 

  25. S. P. Ozkorucuklu, K. Özdemir, and E. Kır, Polym. Adv. Technol. 23, 1202 (2012).

    Article  Google Scholar 

  26. C. Merlini, G. M. O. Barra, T. M. Araujo, and A. Pegoretti, RSC Adv. 4, 15749 (2014). https://doi.org/10.1039/c4ra01058b

  27. L. F. Malmonge, G. de A. Lopes, S. de C. Langiano, J. A. Malmonge, J. M. M. Cordeiro, and L. H. C. Mattoso, Eur. Polym. J. 42, 3108 (2006).

    Article  Google Scholar 

  28. S. Ray, A. J. Easteal, R. P. Cooney, and N. R. Edmonds, Mater. Chem. Phys. 113, 829 (2009).

    Article  Google Scholar 

  29. E. Yu. Rosova, I. S. Kuryndin, N. V. Bobrova, and G. K. Elyashevich, Polymer Sci., Ser. B 46, 135 (2004).

    Google Scholar 

  30. M. Bleha, M. Trchova, P. Bober, Z. Moravkova, J. Prokes, and J. Stejskal, Mater. Chem. Phys. 194, 206 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.N. Vlasova for IR spectroscopy measurements of PVDF and PVDF/PANI samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Elyashevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elyashevich, G.K., Kuryndin, I.S., Rozova, E.Y. et al. Polymer Piezoelements Based on Porous Polyvinylidene Fluoride Films and Contact Electrode Polyaniline Layers. Phys. Solid State 62, 566–573 (2020). https://doi.org/10.1134/S1063783420030099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420030099

Keywords:

Navigation