Skip to main content

Advertisement

Log in

Ac-conductivity and dielectric relaxations above glass transition temperature for parylene-C thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

45% semi-crystalline parylene-C (–H2C–C6H3Cl–CH2–) n thin films (5.8 μm) polymers have been investigated by broadband dielectric spectroscopy for temperatures above the glass transition (T g =90°C). Good insulating properties of parylene-C were obtained until operating temperatures as high as 200°C. Thus, low-frequency conductivities from 10−15 to 10−12 S/cm were obtained for temperatures varying from 90 to 185°C, respectively. This conductivity is at the origin of a significant increase in the dielectric constant at low frequency and at high temperature. As a consequence, Maxwell–Wagner–Sillars (MWS) polarization at the amorphous/crystalline interfaces is put in evidence with activation energy of 1.5 eV. Coupled TGA (Thermogravimetric analysis) and DTA (differential thermal analysis) revealed that the material is stable up to 400°C. This is particularly interesting to integrate this material for new applications as organic field effect transistors (OFETs). Electric conductivity measured at temperatures up to 200°C obeys to the well-known Jonscher law. The plateau observed in the low frequency part of this conductivity is temperature-dependent and follows Arrhenius behavior with activation energy of 0.97 eV (deep traps).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Jakabovič, J. Kováč, M. Weis, D. Hasko, R. Srnánek, P. Valent, R. Resel, Microelectron. J. 40, 595 (2009)

    Article  Google Scholar 

  2. I.M. Graz, S.P. Lacour, Appl. Phys. Lett. 95, 243305 (2009)

    Article  ADS  Google Scholar 

  3. N. Kawasaki, W.L. Kalb, T. Mathis, Y. Kaji, R. Mitsuhashi, H. Okamoto, Y. Sugawara, A. Fujiwara, Y. Kubozono, B. Batlogg, Appl. Phys. Lett. 96, 113305 (2010)

    Article  ADS  Google Scholar 

  4. S.S. Sabri, P.L. Lévesque, C.M. Aguirre, J. Guillemette, R. Martel, T. Szkopek, Appl. Phys. Lett. 95, 242104 (2009)

    Article  ADS  Google Scholar 

  5. X. Liu, S. MacNaughton, D.B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R.D. Averitt, M.R. Dokmeci, S. Sonkusale, W.J. Padilla, Appl. Phys. Lett. 96, 011906 (2010)

    Article  ADS  Google Scholar 

  6. I. García, A. Ruiz de Luzuriaga, H. Grande, L. Jeandupeux, J. Charmet, E. Laux, H. Keppner, D. Mecerreyes, G. Cabañero, Mater. Chem. Phys. (2010). doi:10.1016/J.matchemphys.2010.07.060

  7. B. Park, K.-J. Im, K. Cho, S. Kim, Org. Electron. 9, 878 (2008)

    Article  Google Scholar 

  8. C.-L. Chen, E. Lopez, Y.-J. Jung, S. Müftü, S. Selvarasah, M.R. Dokmeci, Appl. Phys. Lett. 93, 093109 (2008)

    Article  ADS  Google Scholar 

  9. L. Hu, D.S. Hecht, G. Grüner, Nanotechnology 20, 465304 (2009)

    Article  ADS  Google Scholar 

  10. C.-M. Lin, W. Fang, Nanotechnology 20, 465502 (2009)

    Article  ADS  Google Scholar 

  11. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003)

    Google Scholar 

  12. J.P. Runt, J.J. Fitzgerald, Dielectric Spectroscopy of Polymeric Materials: Fundamentals and Applications (American Chemical Society, Washington, 1997)

    Google Scholar 

  13. J.J. Senkevich, S.B. Desu, Polymer 40, 5751 (1999)

    Article  Google Scholar 

  14. H. Huang, Y. Xu, H.Y. Low, Polymer 46, 5949 (2005)

    Article  Google Scholar 

  15. T. Goda, T. Konno, M. Takai, K. Ishihara, Colloids Surf. B 54, 67 (2007)

    Article  Google Scholar 

  16. P. Tewari, R. Rajagopalan, E. Furman, M.T. Lanagan, J. Colloid Interface Sci. 332, 65 (2009)

    Article  Google Scholar 

  17. A. Kahouli, A. Sylvestre, L. Ortega, F. Jomni, B. Yangui, M. Maillard, B. Berge, J.-C. Robert, J. Legrand, Appl. Phys. Lett. 94, 152901 (2009)

    Article  ADS  Google Scholar 

  18. S.M. Lee, Xylylene Polymers. Kirk-Othmer Encyclopedia of Chemical Technology 3rd edn., vol. 24 (Wiley, New York, 1983), pp. 744–771

    Google Scholar 

  19. M. Arous, I. Ben Amor, A. Kallel, Z. Fakhfakh, G. Perrier, J. Phys. Chem. Solids 68, 1405 (2007)

    Article  ADS  Google Scholar 

  20. G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kahouli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahouli, A., Sylvestre, A., Jomni, F. et al. Ac-conductivity and dielectric relaxations above glass transition temperature for parylene-C thin films. Appl. Phys. A 106, 909–913 (2012). https://doi.org/10.1007/s00339-011-6706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6706-4

Keywords

Navigation