Skip to main content
Log in

Engineered doped and codoped polyaniline gas sensors synthesized in N,N,dimethylformamide media

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Conducting Polyaniline films (Pani) on Corning glass substrates, produced using either an in-situ doping process or a co-doping process, were prepared by the oxidative polymerization of aniline in N,N,dimethylformamide. Bicyclic aliphatic camphorsulfonic acid (CSA), aromatic toluenesulfonic acid (TSA) and carboxylic trifluoroacetic acid (TFA) were employed as doping agents, and CSA mixed with TSA and CSA mixed with TFA were employed as the co-doping materials. The topography of the Pani films was analyzed by atomic-force microscopy (AFM), and their doping and oxidizing states were characterized by Fourier-transform infrared (FT-IR) spectroscopy and optical (UV-Vis) spectroscopy. Flower-like clusters, microfibers, and nanofibers were obtained by doping with CSA, TSA, and the mix of both (CSATSA), respectively. The flower-like morphology limits the conductivity of the film while the microfiber morphology leads to a highly conductive film. The conductivity of the films increases with the doping level, coil-like conformation of the chain and the protonation of the imine in quinoid units. The codoped process reduces the roughness of the CSA-doped films by 50%, but the conductivity depends on the acid type used for this process (TSA or TFA). The optical gas sensor response of the films is related to both the morphology and the degree of protonation. In this study, Pani with a microfiber morphology obtained from TSA-doping is the most sensitive to ammonia gas sensing, and Pani with flower-like morphology is the least sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Hu, M. Trejo, M.E. Nicho, J.M. Saniger, A. García-Valenzuela, Adsorption kinetics of optochemical NH3 gas sensing with semiconductor polyaniline films. Sens. Actuators B 82, 14 (2002)

    Article  Google Scholar 

  2. J. Elizalde-Torres, H. Hu, A. García-Valenzuela, NO2-induced optical absorbance changes in semiconductor polyaniline thin films. Sens. Actuators B 98, 218 (2004)

    Article  Google Scholar 

  3. H. Hu, B.E. Ortíz-Aguilar, L. Hechavarría, Effect of pH value of poly(ethylenimine)-H2SO4 electrolyte on electrochromic response of polyaniline thin films. Opt. Mater. 29, 579 (2007)

    Article  ADS  Google Scholar 

  4. U. León-Silva, M.E. Nicho, H. Hu, R. Cruz-Silva, Effect of modified ITO substrate on electrochromic properties of polyaniline films. Sol. Energy Mater. Sol. Cells 91, 1444 (2007)

    Article  Google Scholar 

  5. M.C. Arenas, E. Andablo, V.M. Castaño, Synthesis of conducting polyaniline nanofibers from single and binary dopant agents. J. Nanosci. Nanotechnol. 10, 549 (2010)

    Article  Google Scholar 

  6. C. Arenas, G. Sánchez, Optical, electrical and morphological properties of transparent binary doped polyaniline thin films synthesized by in situ chemical bath deposition. Polym. Int. 60, 1123 (2011)

    Article  Google Scholar 

  7. N.V. Blinova, J. Stejskal, M. Trchová, J. Prokes, Polyaniline prepared in solutions of phosphoric acid: Powders, thin films, and colloidal dispersions. Polymer 47, 42 (2006)

    Article  Google Scholar 

  8. G. Anitha, E. Subramanian, Dopant induced specificity in sensor behaviour of conducting polyaniline materials with organic solvents. Sens. Actuators B 92, 49 (2003)

    Article  Google Scholar 

  9. A. Rahy, T. Rguig, S.J. Cho, C.E. Bunker, D.J. Yang, Polar solvent soluble and hydrogen absorbing polyaniline nanofibers. Synth. Met. 161, 280 (2011)

    Article  Google Scholar 

  10. M.M. Ayad, E.A. Zaki, Doping of polyaniline films with organic sulfonic acids in aqueous media and the effect of water on these doped films. Eur. Polym. J. 44, 3741 (2008)

    Article  Google Scholar 

  11. E. Bormashenko, R. Pogreb, S. Sutovski, A. Shulzinger, A. Sheshnev, G. Izakson, A. Katzir, Infrared optics applications of thin polyaniline emeraldine base films. Synth. Met. 140, 49 (2004)

    Article  Google Scholar 

  12. D. Verma, V. Dutta, Role of novel microstructure of polyaniline-CSA thin film in ammonia sensing at room temperature. Sens. Actuators B 134, 373 (2008)

    Article  Google Scholar 

  13. L.F. Malmonge, G.A. Lopes, S.C. Langiano, J.A. Malmonge, J.M.M. Cordeiro, L.H.C. Mattoso, A new route to obtain PVDF/PANI conducting blends. Eur. Polym. J. 42, 3108 (2006)

    Article  Google Scholar 

  14. S.M. Ebrahim, A. Gad, A. Morsy, Highly crystalline and soluble dodecylbenzene sulfonic acid doped poly(o-toluidine). Synth. Met. 160, 2658 (2010)

    Article  Google Scholar 

  15. P. Liu, Synthesis and characterization of organo-soluble conducting polyaniline doped with oleic acid. Synth. Met. 159, 148 (2009)

    Article  ADS  Google Scholar 

  16. M.V. Kulkarni, A.K. Viswanath, Comparative studies of chemically synthesized polyaniline and (poly(o-toluidine) doped with p-toluene sulphonic acid). Eur. Polym. J. 40, 379 (2004)

    Article  Google Scholar 

  17. I. Sasaki, J. Janata, M. Josowicz, Stabilization of electronic properties of (IR)-(-)-10-camphorsulfonic acid doped polyaniline by UV irradiation. Polym. Degrad. Stab. 92, 1408 (2007)

    Article  Google Scholar 

  18. T. Chen, C. Dong, X. Li, J. Gao, Thermal degradation mechanism of dodecylbenzene sulfonic acid-hydrochloric acid co-doped polyaniline. Polym. Degrad. Stab. 94, 1788 (2009)

    Article  Google Scholar 

  19. C. Basavaraja, R. Pierson, D.S. Huh, A. Venkataraman, S. Basavaraja, Studies on properties of polyaniline-dodecylbenzene sulfonic acid composite films synthesized using different oxidants. Macromol. Res. 17, 609 (2009)

    Article  Google Scholar 

  20. H. Pei, L. Hong, J.Y. Lee, Effects of polyaniline chain structures on proton conduction in a PEM host matrix. J. Membr. Sci. 307, 126 (2008)

    Article  Google Scholar 

  21. L. Zhang, L. Zhang, M. Wan, Molybdic acid doped polyaniline micro/nanostructures via a self-assembly process. Eur. Polym. J. 44, 2040 (2008)

    Article  Google Scholar 

  22. E.N. Konyushenko, J. Stejskal, M. Trchová, N.V. Blinova, P. Holler, Polymerization of aniline in ice. Synth. Met. 158, 927 (2008)

    Article  Google Scholar 

  23. P. Bober, M. Trchvá, J. Prokes, M. Vaga, J. Stejska, Polyaniline–silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids. Electrochim. Acta 56, 3580 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by DGAPA-UNAM through of the Projects PAPIIT (IN115609) and IACOD (IA102611). We thank Daniel Bahena (CIICAp-UAEM) for the AFM images, Genoveva Hernández for the FT-IR analysis, Patricia Altuzar (CIE-UNAM) for the TGA analysis, and Domingo Rangel for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Arenas.

Additional information

V.M. Castaño in sabatical leave at Universidad Autónoma de Querétaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arenas, M.C., Sánchez, G., Nicho, M.E. et al. Engineered doped and codoped polyaniline gas sensors synthesized in N,N,dimethylformamide media. Appl. Phys. A 106, 901–908 (2012). https://doi.org/10.1007/s00339-011-6704-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6704-6

Keywords

Navigation