Skip to main content
Log in

Manganese doping effects on interband electronic transitions, lattice vibrations, and dielectric functions of perovskite-type Ba0.4Sr0.6TiO3 ferroelectric ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Ba0.4Sr0.6−x Mn x TiO3 (BSMT) ceramics with different Mn composition (from 1% to 10%) have been prepared via the conventional solid-state reaction sintering. The X-ray diffraction analysis shows that the ceramics are polycrystalline with the single perovskite phase. The lattice vibrations and optical properties have been investigated using Raman scattering, spectroscopic ellipsometry (SE), and infrared reflectance spectra. It was found that the optical bandgap for the BSMT ceramics is varied between 3.40 and 3.65 eV. The three first-order Raman-active phonon modes can be observed, and the frequency of the A 1(LO3)/E(LO) mode shows a blue shift of 8 cm−1 with the Mn composition, which can be attributed to the distortion of the TiO6 octahedron. With increasing Mn composition, the frequency of the infrared-active TO4 mode decreases from 532 to 520 cm−1, owing to the local variation of the lattice constant induced by the Mn incorporation. Moreover, the optical functions of the ceramics from the far-infrared to ultraviolet region are obtained based on the SE and reflectance spectra, which is useful for the potential applications in ferroelectric-based optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Nagaraj, T. Sawhney, S. Perusse, S. Aggarwal, R. Ramesh, V.S. Kaushik, S. Zafar, R.E. Jones, J.-H. Lee, V. Balu, J. Lee, Appl. Phys. Lett. 74, 3194 (1999)

    Article  ADS  Google Scholar 

  2. S.C. Roy, G.L. Sharma, M.C. Bhatnagar, Solid State Commun. 141, 243 (2007)

    Article  ADS  Google Scholar 

  3. A.B. Kozyrev, A.D. Kanareykin, E.A. Nenasheva, V.N. Osadchy, D.M. Kosmin, Appl. Phys. Lett. 95, 012908 (2009)

    Article  ADS  Google Scholar 

  4. B. Su, T.W. Button, J. Appl. Phys. 95, 1382 (2004)

    Article  ADS  Google Scholar 

  5. S. Xu, Y. Qu, C. Zhang, J. Appl. Phys. 106, 014107 (2009)

    Article  ADS  Google Scholar 

  6. S.S. Kim, C. Park, Appl. Phys. Lett. 75, 2554 (1999)

    Article  ADS  Google Scholar 

  7. Z. Yuan, Y. Lin, J. Weaver, X. Chen, C.L. Chen, G. Subramanyam, J.C. Jiang, E.I. Meletis, Appl. Phys. Lett. 87, 152901 (2005)

    Article  ADS  Google Scholar 

  8. J.J. Zhang, J.W. Zhai, X. Yao, Scr. Mater. 61, 764 (2009)

    Article  Google Scholar 

  9. M. Liu, C. Ma, G. Collins, J. Liu, C. Chen, L. Shui, H. Wang, C. Dai, Y. Lin, J. He, J. Jiang, E.I. Meletis, Q. Zhang, Cryst. Growth Des. 10, 4221 (2010)

    Article  Google Scholar 

  10. Y.L. Li, Y.F. Qu, Mater. Res. Bull. 44, 82 (2009)

    Article  Google Scholar 

  11. J.J. Zhang, J.W. Zhai, X.J. Chou, X. Yao, Mater. Chem. Phys. 111, 409 (2008)

    Article  Google Scholar 

  12. J.Z. Zhang, Y.D. Shen, Y.W. Li, Z.G. Hu, J.H. Chu, J. Phys. Chem. C 114, 15157 (2010)

    Google Scholar 

  13. W.L. Yu, W.W. Li, J.D. Wu, J. Sun, J.J. Zhu, M. Zhu, Z.G. Hu, J.H. Chu, J. Phys. Chem. C 114, 8593 (2010)

    Article  Google Scholar 

  14. R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977), p. 156

    Google Scholar 

  15. Z.G. Hu, Y.W. Li, M. Zhu, Z.Q. Zhu, J.H. Chu, J. Phys. Chem. C 112, 9737 (2008)

    Article  Google Scholar 

  16. K. Kamarás, K.-L. Barth, F. Keilmann, R. Henn, M. Reedyk, C. Thomsen, M. Cardona, J. Kircher, P.L. Richards, J.-L. Stehlé, J. Appl. Phys. 78, 1235 (1995)

    Article  ADS  Google Scholar 

  17. J.L. Servoin, Y. Luspin, F. Gervais, Phys. Rev. B 22, 5510 (1980)

    Article  ADS  Google Scholar 

  18. A. Tkach, P.M. Vilarinho, D. Nuzhnyy, J. Petzelt, Acta Mater. 58, 577 (2010)

    Article  Google Scholar 

  19. F. Moura, A.Z. Simoes, L.S. Cavalcante, M. Zampieri, J.A. Varela, E. Longo, M.A. Zaghete, M.L. Simoes, Appl. Phys. Lett. 92, 032905 (2008)

    Article  ADS  Google Scholar 

  20. Y. Yuzyuk, V. Alyoshin, I. Zakharchenko, E. Sviridov, A. Almeida, M. Chaves, Phys. Rev. B 65, 134107 (2002)

    Article  ADS  Google Scholar 

  21. J.J. Zhang, J.W. Zhai, X.J. Chou, J. Shao, X. Lu, X. Yao, Acta Mater. 57, 4491 (2009)

    Article  Google Scholar 

  22. S.-Y. Kuo, W.-Y. Liao, W.-F. Hsieh, Phys. Rev. B 64, 224103 (2001)

    Article  ADS  Google Scholar 

  23. U.D. Venkateswaran, V.M. Naik, R. Naik, Phys. Rev. B 58, 14256 (1998)

    Article  ADS  Google Scholar 

  24. Z.G. Hu, Y.W. Li, M. Zhu, Z.Q. Zhu, J.H. Chu, Phys. Lett. A 372, 4521 (2008)

    Article  ADS  Google Scholar 

  25. D.Y. Wang, S. Li, H.L.W. Chan, C.L. Choy, Appl. Phys. Lett. 96, 061905 (2010)

    Article  ADS  Google Scholar 

  26. S. Kohiki, M. Arai, H. Yoshikawa, S. Fukushima, M. Oku, Y. Waseda, Phys. Rev. B 62, 7964 (2000)

    Article  ADS  Google Scholar 

  27. W.L. Warren, K. Vanheusden, D. Dimos, G.E. Pike, B.A. Tuttle, J. Am. Ceram. Soc. 79, 536 (1996)

    Article  Google Scholar 

  28. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  ADS  Google Scholar 

  29. D.A. Tenne, A. Soukiassian, X.X. Xi, H. Choosuwan, R. Guo, A.S. Bhalla, Phys. Rev. B 70, 174302 (2004)

    Article  ADS  Google Scholar 

  30. T. Ostapchuk, J. Petzelt, P. Kuzel, S. Veljko, A. Tkach, P. Vilarinho, I. Ponomareva, L. Bellaiche, E. Smirnova, V. Lemanov, A. Sotnikov, M. Weihnacht, Ferroelectrics 367, 139 (2008)

    Article  Google Scholar 

  31. T. Tsurumi, J. Li, T. Hoshina, H. Kakemoto, M. Nakada, J. Akedo, Appl. Phys. Lett. 91, 182905 (2007)

    Article  ADS  Google Scholar 

  32. M. Zhu, L. Sun, W.W. Li, W.L. Yu, Y.W. Li, Z.G. Hu, J.H. Chu, Mater. Res. Bull. 45, 1654 (2010)

    Article  Google Scholar 

  33. T. Ostapchuk, J. Petzelt, J. Hlinka, V. Bovtun, P. Kužel, I. Ponomareva, S. Lisenkov, L. Bellaiche, A. Tkach, P. Vilarinho, J. Phys., Condens. Matter 21, 474215 (2009)

    Article  ADS  Google Scholar 

  34. R.L. Moreira, R.P.S.M. Lobo, G. Subodh, M.T. Sebastian, F.M. Matinaga, A. Dias, Chem. Mater. 19, 6548 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Jingji Zhang for providing the samples. This work was financially supported by Natural Science Foundation of China (Grant Nos. 60906046 and 11074076), Major State Basic Research Development Program of China (Grant Nos. 2007CB924901 and 2011CB922200), Program of New Century Excellent Talents, MOE (Grant No. NCET-08-0192), Projects of Science and Technology Commission of Shanghai Municipality (Grant Nos. 10DJ1400201, 10SG28, and 11520701300), and The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigao Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, K., Zhang, J., Yu, W. et al. Manganese doping effects on interband electronic transitions, lattice vibrations, and dielectric functions of perovskite-type Ba0.4Sr0.6TiO3 ferroelectric ceramics. Appl. Phys. A 106, 877–884 (2012). https://doi.org/10.1007/s00339-011-6701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6701-9

Keywords

Navigation