Skip to main content
Log in

Dielectric and Piezoelectric Properties of (Na0.5Bi0.5)(Ti1–xMnx)O3 (x = 0–0.1) Modified Ceramics

  • Published:
Inorganic Materials Aims and scope

An Erratum to this article was published on 01 December 2021

This article has been updated

Abstract—

We have studied the crystal structure and dielectric and local piezoelectric properties of (Na0.5Bi0.5)(Ti1–xMnx)O3 (x = 0–0.1) modified sodium bismuth titanate-based ceramics and observed the formation of a pseudocubic phase with the perovskite structure. Its unit-cell volume first decreases and then, for x ≥ 0.05, increases. The ceramics undergo phase transitions, which show up as anomalies in their dielectric permittivity near ~450 K and peaks at a Curie temperature of ~600 K. As x increases to 0.04, their Curie temperature decreases by 40 K. The phase transitions near 450 K exhibit well-defined relaxor behavior due to the presence of polar regions in the nonpolar matrix. The samples with x < 0.05 have been shown to have an increased room-temperature dielectric permittivity, which correlates with the increased effective piezoelectric coefficient, suggesting that doping with manganese has an advantageous effect on the functional properties of sodium bismuth titanate ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Change history

REFERENCES

  1. Smolenskii, G.A., Isupov, V.A., Agranovskaya, A.I., and Krainik, N.N., New ferroelectrics of complex composition, Fiz. Tverd. Tela (Leningrad), 1961, vol. 2, pp. 2651–2654.

    Google Scholar 

  2. Vakhrushev, S.B., Isupov, V.A., Kvyatkovsky, B.E., Okuneva, N.M., Pronin, I.P., Smolensky, G.A., and Syrnikov, P.P., Phase transitions and soft modes in sodium bismuth titanate, Ferroelectrics, 1985, vol. 63, pp. 153–160.

    Article  CAS  Google Scholar 

  3. Zhang, S.J., Xia, R., and Shrout, R.T., Lead-free piezoelectric ceramics: alternatives for PZT?, J. Electroceram., 2007, vol. 19, pp. 251–257.

    Article  Google Scholar 

  4. Takenaka, T., Nagata, H., and Hiruma, Y., Current developments and prospective of lead-free piezoelectric ceramics, Jpn. J. Appl. Phys., 2008, vol. 47, pp. 3787–3801.

    Article  CAS  Google Scholar 

  5. Panda, P.K., Review: environmental friendly lead-free piezoelectric materials, J. Mater. Sci., 2009, vol. 44, pp. 5049–5062.

    Article  CAS  Google Scholar 

  6. Coondoo, I., Panwar, N., and Kholkin, A., Lead-free piezoelectrics: current status and perspectives, J. Adv. Dielectr., 2013, vol. 3, paper 1330002.https://doi.org/10.1142/S2010135X13300028/

  7. Reichmann, K., Feteira, A., and Li, M., Bismuth sodium titanate based materials for piezoelectric actuators, Materials, 2015, vol. 8, pp. 8467–8495. https://doi.org/10.3390/ma8125469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rödel, J., Webber, K.G., Dittmer, R., Wook Jo, Kimura, M., and Damjanovic, D., Transferring lead-free piezoelectric ceramics into application, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 1659–1681.https://doi.org/10.1016/j.jeurceramsoc.2014.12.013

    Article  CAS  Google Scholar 

  9. Rödel, J. and Li, J., Lead-free piezoceramics: status and perspectives, MRS Bull., 2018, vol. 43, pp. 576–580.https://doi.org/10.1557/mrs.2018.181

    Article  CAS  Google Scholar 

  10. Vodyanoy, V.J. and Mnyukh, Y., The physical nature of “giant” magnetocaloric and electrocaloric effects, Am. J. Mater. Sci., 2013, vol. 3, no. 5, pp. 105–109.https://doi.org/10.5923/j.materials.20130305.01

    Article  Google Scholar 

  11. Weyland, F., Acosta, M., Koruza, J., Breckner, P., Rodel, J., and Novak, N., Criticality: concept to enhance the piezoelectric and electrocaloric properties of ferroelectrics, Adv. Funct. Mater., 2016, vol. 26, pp. 7326–7333.

    Article  CAS  Google Scholar 

  12. Kumar, A., Thakre, A., Jeong, D.Y., and Ryu, J., Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics, J. Mater. Chem. C, 2019, vol. 7, pp. 6836–6859.https://doi.org/10.1039/c9tc01525f

    Article  CAS  Google Scholar 

  13. Feng Li, Biao Lu, Jiwei Zhai, Bo Shen, Huarong Zeng, Shengguo Lu, Viola, G., and Haixue Yan, Enhanced piezoelectric properties and electrocaloric effect in novel lead-free (Bi0.5K0.5)TiO3–La(Mg0.5Ti0.5)O3 ceramics, J. Am. Ceram. Soc., 2018, vol. 101, pp. 5503–5513.https://doi.org/10.1111/jace.15812

    Article  CAS  Google Scholar 

  14. Gorfman, S. and Thomas, P.A., Evidence for a non-rhombohedral average structure in the lead-free piezoelectric material Na0.5Bi0.5TiO3, J. Appl. Crystallogr., 2010, vol. 43, pp. 1409–1414.

    Article  CAS  Google Scholar 

  15. Jones, G.O. and Thomas, P.A., Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3, Acta Crystallogr., Sect. B: Struct. Sci., 2002, vol. 58, no. 2, pp. 168–178.

    Article  CAS  Google Scholar 

  16. Aksel, E., Foronda, H., Calhoun, K.A., Jones, J.L., Schaab, S., and Granzow, T., Processing and properties of Na0.5Bi0.5TiO3 piezoelectric ceramics modified with La, Mn and Fe, Funct. Mater. Lett., 2010, vol. 3, no. 1, paper 4548.

  17. Davies, M., Aksel, E., and Jones, J.L., Enhanced high-temperature piezoelectric coefficients and thermal stability of Fe- and Mn-substituted Na0.5Bi0.5TiO3 ceramics, J. Am. Ceram. Soc., 2011, vol. 94, no. 5, pp. 1314–1316.

    Article  CAS  Google Scholar 

  18. Suchanicz, J., Sitko, D., Svirskas, S., Ivanov, M., Kezionis, A., Banys, J., Czaja, P., Kruzina, T.V., and Szcze Rsny, J., Ferroelectric, dielectric and optic properties of Mn and Cr-doped Na0.5Bi0.5TiO3 single crystals, Ferroelectrics, 2018, vol. 532, pp. 38–49.https://doi.org/10.1080/00150193.2018.1499402

    Article  CAS  Google Scholar 

  19. Coondoo, I., Ferroelectrics, Shanghai: InTech China, 2010.

    Book  Google Scholar 

  20. Aksel, E., Erdem, E., Jakes, P., Jones, J.L., and Eichel, R.-A., Defect structure and materials “hardening” in F2O3-doped (Bi0.5Na0.5)TiO3 ferroelectrics, Appl. Phys. Lett., 2010, vol. 97, paper 012903.

  21. Yeon Soo Sung and Myong Ho Kim, Effects of B-site donor and acceptor doping in Pb-free (Bi 0.5 Na 0.5 )TiO 3 ceramics, Technical Ferroelectrics, Coondoo, I., Ed., 2010, pp. 217–230. http://www.intechopen.com/books/ferroelectrics/doping-effects-in-pb-free-bi0.5na0.5-tio3-ceramics

    Google Scholar 

  22. Koruza, J., Kodumudi Venkataraman, L., and Malic B., Magnetic, ferroelectric, and multiferroic metal oxides, Lead-Free Perovskite Ferroelectrics, chapter 3, pp. 51–69.https://doi.org/10.1016/B978-0-12-811180-2.00003-7

  23. Li Ming, Zhang, H., Cook, S.N., Li Linhao, Kilner, J.A., Reaney, J.M., and Sinclair, D.C., The dramatic influence of A-site non-stoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3, Chem. Mater., 2015, vol. 27, pp. 629–634.

    Article  Google Scholar 

  24. Politova, E.D., Strebkov, D.A., Mosunov, A.V., Golubko, N.V., Kaleva, G.M., Sadovskaya, N.V., and Stefanovich, S.Yu., Ferroelectric phase transitions in non-stoichiometric sodium–bismuth titanate ceramics, Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 3, pp. 269–272.

    Article  CAS  Google Scholar 

  25. Politova, E.D., Mosunov, A.V., Strebkov, V.A., Golubko, N.V., Kaleva, G.M., Loginov, B.A., Loginov, A.B., and Stefanovich, S.Yu., Phase formation and phase transitions in nonstoichiometric sodium bismuth titanate ceramics, Inorg. Mater., 2018, vol. 54, no. 7, pp. 744–748.

    Article  CAS  Google Scholar 

  26. Shvartsman, V.V. and Lupascu, D.C., Lead-free relaxor ferroelectrics, J. Am. Ceram. Soc., 2012, vol. 95, pp. 1–26.

    Article  CAS  Google Scholar 

  27. Hyeong Jae Lee and Shujun Zhang, in Lead-Free Piezoelectrics, Priya, Sh. and Nahm, S., Eds., New York: Springer, 2012, pp. 291–309.

    Google Scholar 

  28. Segalla, A.G., Nersesov, S.S., Kaleva, G.M., and Politova, E.D., Ways of improving functional parameters of high-temperature ferroelectric/piezoelectric ceramics based on BiScO3–PbTiO3 solid solutions, Inorg. Mater., 2014, vol. 50, no. 6, pp. 606–611.

    Article  CAS  Google Scholar 

  29. Lee, G., Ji, J.-H., and Koh, J.-H., Enhanced piezoelectric properties of (Bi,Na)TiO3 –(Bi,K)TiO3 ceramics prepared by two-step sintering process, Int. J. Appl. Ceram. Technol., 2017, vol. 15, no. 2, pp. 531–537.https://doi.org/10.1111/ijac.12798

    Article  CAS  Google Scholar 

  30. Kleemann, W., Random-field induced antiferromagnetic, ferroelectric and structural domain states, Int. J. Mod. Phys. B, 1993, vol. 7, pp. 2469–2507.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 21-53-12005) and the Russian Federation Ministry of Science and Higher Education (state research targets for the Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences (theme no. 45.22, state registration no. AAAA-A18-118012390045-2, project no. 0718-2020-0031) and the Crystallography and Photonics Federal Scientific Research Center, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Politova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politova, E.D., Kaleva, G.M., Bel’kova, D.A. et al. Dielectric and Piezoelectric Properties of (Na0.5Bi0.5)(Ti1–xMnx)O3 (x = 0–0.1) Modified Ceramics. Inorg Mater 57, 942–949 (2021). https://doi.org/10.1134/S0020168521090120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521090120

Keywords:

Navigation