Applied Physics A

, Volume 105, Issue 4, pp 795–800 | Cite as

The effects of a thin film dopant precursor on the structure and properties of femtosecond-laser irradiated silicon

  • Matthew J. Smith
  • Mark Winkler
  • Meng-Ju Sher
  • Yu-Ting Lin
  • Eric Mazur
  • Silvija Gradečak
Rapid communication

Abstract

Femtosecond (fs) laser irradiation of a silicon substrate coated with a thin film is a flexible approach to producing metastable alloys with unique properties, including near-unity sub-band gap absorptance extending into the infrared. However, dopant incorporation from a thin film during fs-laser irradiation is not well understood. We study the thin film femtosecond-laser doping process through optical and structural characterization of silicon fs-laser doped using a selenium thin film, and compare the resulting microstructure and dopant distribution to fs-laser doping with sulfur from a gaseous precursor. We show that a thin film dopant precursor significantly changes the laser-material interactions, modifying both the surface structuring and dopant incorporation processes and in turn affecting p–n diode behavior.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.-J. Sher, M.T. Winkler, E. Mazur, Mater. Res. Soc. Bull. 36, 439 (2011) CrossRefGoogle Scholar
  2. 2.
    R.O. Carlson, R.N. Hall, E.M. Pell, J. Phys. Chem. Solids 8, 81 (1959) ADSCrossRefGoogle Scholar
  3. 3.
    H.R. Vydyanath, J.S. Lorenzo, F.A. Kroger, J. Appl. Phys. 49, 5928 (1978) ADSCrossRefGoogle Scholar
  4. 4.
    C. Wu, C.H. Crouch, L. Zhao, J.E. Carey, R. Younkin, J.A. Levinson, E. Mazur, R.M. Farrell, P. Gothoskar, A. Karger, Appl. Phys. Lett. 78, 1850 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    C.H. Crouch, J.E. Carey, M. Shen, E. Mazur, F.Y. Génin, Appl. Phys. A, Mater. Sci. Process. 79, 1635 (2004) ADSGoogle Scholar
  6. 6.
    M.A. Sheehy, B.R. Tull, C.M. Friend, E. Mazur, Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 137, 289 (2007) Google Scholar
  7. 7.
    B.R. Tull, M.T. Winkler, E. Mazur, Appl. Phys. A, Mater. Sci. Process. 96, 327 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    R. Younkin, J.E. Carey, E. Mazur, J.A. Levinson, C.M. Friend, J. Appl. Phys. 93, 2626 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    J.E. Carey, C.H. Crouch, M. Shen, E. Mazur, Opt. Lett. 30, 1773 (2005) ADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
    C.H. Crouch, J.E. Carey, J.M. Warrender, M.J. Aziz, E. Mazur, F.Y. Genin, Appl. Phys. Lett. 84, 1850 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    V. Zorba, N. Boukos, I. Zergioti, C. Fotakis, Appl. Opt. 47, 1846 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    B.R. Tull, J.E. Carey, E. Mazur, J. McDonald, S.M. Yalisove, Mater. Res. Soc. Bull. 31, 7 (2006) CrossRefGoogle Scholar
  14. 14.
    A.J. Pedraza, J.D. Fowlkes, D.H. Lowndes, Appl. Phys. Lett. 74, 2322 (1999) ADSCrossRefGoogle Scholar
  15. 15.
    T.E. Glover, J. Opt. Soc. Am. B 20, 125 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys (ASM International, Materials Park, 2010) Google Scholar
  17. 17.
    M.J. Smith, Y.T. Lin, M.J. Sher, M.T. Winkler, E. Mazur, S. Gradečak J. App. Phys. 110, 053524 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Matthew J. Smith
    • 1
  • Mark Winkler
    • 2
  • Meng-Ju Sher
    • 2
  • Yu-Ting Lin
    • 3
  • Eric Mazur
    • 2
    • 3
  • Silvija Gradečak
    • 1
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of PhysicsHarvard UniversityCambridgeUSA
  3. 3.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations