Skip to main content
Log in

Fiber laser annealing of indium-tin-oxide nanoparticles for large area transparent conductive layers and optical film characterization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Indium tin oxide (ITO) coatings are widely used as transparent electrodes for optoelectronic devices. The most common preparation methods are sputtering, evaporation, and wet chemical deposition. ITO coatings can also be manufactured by solution deposition of ITO nanoparticles followed by furnace thermal annealing with the major motivation to reduce equipment investment. However, conventional furnace annealing is energy intensive, slow, and limited by the peak processing temperature. To overcome these constraints, we suggest using a laser beam for ITO nanoparticle annealing over a large area. It is shown in the present study that a low cost, high power, and high efficiency laser can yield large area functional ITO films in a process that carries substantial promise for potential industrial implementation. Furthermore, laser annealing generates higher electrical conductivity than conventional, thermally annealed nanoparticle films. The optical and electrical properties of the annealed ITO films can also be altered by adjusting laser parameters and environmental gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Higuchi, S. Uekusa, R. Nakano, K. Yokogawa, Micrograin structure influence on electrical characteristics of sputtered indium tin-oxide films. J. Appl. Phys. 74, 6710 (1993)

    Article  ADS  Google Scholar 

  2. S.W. Jan, S.C. Lee, Preparation and characterization of indium-tin-oxide deposited by direct thermal evaporation of metal indium and tin. J. Electrochem. Soc. 134, 2056 (1987)

    Article  Google Scholar 

  3. J.L. Yao, S. Hao, J.S. Wilkinson, Indium tin oxide films by sequential evaporation. Thin Solid Films 189, 227 (1990)

    Article  ADS  Google Scholar 

  4. R.G. Gordon, Preparation and properties of transparent conductors. Mater. Res. Soc. Symp. Proc. 426, 419 (1996)

    Article  Google Scholar 

  5. T. Maruyama, T. Kitamura, Plasma metallorganic chemical vapor deposition of indium oxide thin films. Jpn. J. Appl. Phys. 28, L1096 (1989)

    Article  ADS  Google Scholar 

  6. P. Turner, R.P. Howson, C.A. Bishop, Optical thin films obtained by plasma-induced chemical vapor deposition. Thin Solid Films 83, 253 (1981)

    Article  ADS  Google Scholar 

  7. G. Yi, M. Sayer, Sol-gel processing of complex oxide films. Am. Ceram. Soc. Bull. 70, 1173 (1991)

    Google Scholar 

  8. H. Dislich, Glassy and crystalline systems from cells—chemical basis and technical application. J. Non-Cryst. Solids 57, 371 (1983)

    Article  ADS  Google Scholar 

  9. D.M. Mattox, Sol-gel derived, air-baked indium and tin oxide films. Thin Solid Films 204, 25 (1991)

    Article  ADS  Google Scholar 

  10. J. Ederth, P. Heszler, A. Hultaker, G.A. Niklasson, C.G. Granqvist, Indium tin oxide films made from nanoparticles: models for the optical and electrical properties. Thin Solid Films 445, 199 (2003)

    Article  ADS  Google Scholar 

  11. A. Solieman, M.A. Aegerter, Modeling of optical and electrical properties of In2O3:Sn coatings made by various techniques. Thin Solid Films 502, 205 (2006)

    Article  ADS  Google Scholar 

  12. J. Ederth, A. Hultaker, G.A. Niklasson, P. Heszler, A.R. Van Doorn, M.J. Jongerius, D. Burgard, C.G. Granqvist, Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air. Appl. Phys. A 81, 1363 (2005)

    Article  ADS  Google Scholar 

  13. H. Pan, N. Misra, S.H. Ko, C.P. Grigoropoulos, N. Miller, E.E. Haller, O. Dubon, Melt-mediated coalescence of solution-deposited ZnO nanoparticles by excimer laser annealing for thin-film transistor fabrication. Appl. Phys. A 94, 111 (2009)

    Article  ADS  Google Scholar 

  14. H. Pan, S.H. Ko, N. Misra, C.P. Grigoropoulos, Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics. Appl. Phys. Lett. 94, 071117 (2009)

    Article  ADS  Google Scholar 

  15. J.A. Woollam, Ellipsometry manual

  16. J.E. Moody, R.H. Hendel, Temperature profiles induced by a scanning CW laser beam. J. Appl. Phys. 53, 4364 (1982)

    Article  ADS  Google Scholar 

  17. F. Stietz, Laser manipulation of the size and shape of supported nanoparticles. Appl. Phys. A 72, 381 (2001)

    Article  ADS  Google Scholar 

  18. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 (1954)

    Article  ADS  Google Scholar 

  19. G. Frank, H. Kostlin, Electrical properties and defect model of tin-doped indium oxide layers. Appl. Phys. A 27, 197 (1982)

    Article  ADS  Google Scholar 

  20. J. Berger, I. Riess, D.S. Tannhauser, Dynamic measurement of oxygen diffusion in indium-tin oxide. Solid State Ion. 15, 225 (1985)

    Article  Google Scholar 

  21. B.-C. Kim, S.-M. Kim, J.-H. Lee, J.-J. Kim, Effect of phase transformation on the densification of coprecipitated nanocrystalline indium tin oxide powders. J. Am. Ceram. Soc. 85, 2083 (2002)

    Article  Google Scholar 

  22. R.X. Wang, C.D. Beling, S. Fung, A.B. Djurisic, C.C. Ling, S. Li, Influence of gaseous annealing environment on the properties of indium-tin-oxide thin films. J. Appl. Phys. 97, 033504 (2005)

    Article  ADS  Google Scholar 

  23. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123 (1986)

    Article  ADS  Google Scholar 

  24. M. Mizuhashi, Jpn. J. Appl. Phys. 22, 4 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas P. Grigoropoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, H., Lee, D., Ko, S.H. et al. Fiber laser annealing of indium-tin-oxide nanoparticles for large area transparent conductive layers and optical film characterization. Appl. Phys. A 104, 29–38 (2011). https://doi.org/10.1007/s00339-011-6397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6397-x

Keywords

Navigation