Skip to main content
Log in

Direct-writing organic three-dimensional nanofibrous structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Direct-writing technology based on Near-Field Electrospinning (NFES) was used to fabricate an organic three-dimensional nanofibrous circle on the patterned silicon substrate. In NFES, straight jet without splitting and chaotic motion was utilized to direct-write orderly nanofiber. When the collector movement speed was lower than electrospinning rate, the relaxed nanofiber would be lead into the pendulum motion by the electrical field force and Coulomb repulsion force from the residual charges on the collector. When the relative air humidity is lower than 35%, individual nanofiber with larger elastic resistance would reveal a good self-assembly performance. Owing to the guidance of the electric field force at the edge of the micro-pattern, a nanofiber was deposited layer by layer to format a 3D nanofibrous circle on the top surface of the micro-pattern. The dimension scale of 3D nanofibrous circle was smaller than 30 µm. With the help of a microscope, a 3D nanofibrous circle can be deposited precisely on the strip micro-pattern with width of 4 µm. Furthermore, a 3D nanofibrous circle in different shapes can be obtained by using special micro-patterns. This organic three-dimensional nanofibrous circle has created a new aspect for the fabrication of organic micro/nanosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Xue, X.L. Wang, C.X. Wu, X. Hou, J. Xi Jiaotong Univ. 43, 70 (2009)

    Google Scholar 

  2. Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, M. McCreary, Nature 423, 136 (2003)

    Article  ADS  Google Scholar 

  3. A.F. Lotus, S. Bhargava, E.T. Bender, E.A. Evans, R.D. Ramsier, D.H. Reneker, G.G. Chase, J. Appl. Phys. 106, 014303 (2009)

    Article  ADS  Google Scholar 

  4. H. Zhang, C.G. Zhao, Y.H. Zhao, G.W. Tang, X.Y. Yuan, Sci. China Chem. 53, 1246 (2010)

    Article  Google Scholar 

  5. H. Xu, S.M. Yang, G. Chen, L.L. Tian, F. He, G.Y. Wang, Y.G. Ma, Chem. J. Chin. Univ. 31, 632 (2010)

    Google Scholar 

  6. L. Xia, Z. Wei, M. Wan, J. Colloid Interface Sci. 341, 1 (2010)

    Article  Google Scholar 

  7. Y. Xin, Z.H. Huang, L. Peng, D.J. Wang, J. Appl. Phys. 105, 086106 (2009)

    Article  ADS  Google Scholar 

  8. X. Huang, S.Q. Li, J.S. Schultz, Q. Wang, Q. Lin, Sens. Actuators B, Chem. 140, 603 (2009)

    Article  Google Scholar 

  9. M. Yang, P.E. Sheehan, W.P. King, L.J. Whitman, J. Am. Chem. Soc. 128, 6774 (2006)

    Article  Google Scholar 

  10. Z.N. Yu, H. Gao, S.Y. Chou, Nanotechnology 18, 065304 (2007)

    Article  ADS  Google Scholar 

  11. R. Chen, N.T. Nuhfer, L. Moussa, H.R. Morris, P.M. Whitmore, Nanotechnology 19, 455604 (2008)

    Article  ADS  Google Scholar 

  12. Y. Nahmias, R.E. Schwartz, C.M. Verfaillie, D.J. Odde, Biotechnol. Bioeng. 92, 129 (2005)

    Article  Google Scholar 

  13. S. Roy, Z.Q. Gao, Nanotechnology 21, 245306 (2010)

    Article  ADS  Google Scholar 

  14. Y.F. Lin, Y. Huang, D.B. Chrisey, J. Appl. Phys. 105, 093111 (2009)

    Article  ADS  Google Scholar 

  15. K.C. Vishnubhatla, S.V. Rao, R.S.S. Kumar, R. Osellame, S.N.B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G.C. Righini, D.N. Rao, J. Phys. D, Appl. Phys. 42, 205106 (2009)

    Article  ADS  Google Scholar 

  16. J. Chen, D.F. Kuang, M. Gui, Z.L. Fang, Chin. Phys. Lett. 26, 014202 (2009)

    Article  ADS  Google Scholar 

  17. D.H. Sun, C. Chang, S. Li, L.W. Lin, Nano Lett. 6, 839 (2006)

    Article  ADS  Google Scholar 

  18. G.F. Zheng, L.Y. Wang, H.L. Wang, D.H. Sun, W.W. Li, L.W. Lin, Adv. Mater. Rev. 60–61, 439 (2009)

    Article  Google Scholar 

  19. G. Zheng, W. Li, X. Wang, D. Wu, D. Sun, L. Lin, J. Phys. D, Appl. Phys. 43, 415501 (2010)

    Article  Google Scholar 

  20. J. Kameoka, R. Orth, Y.N. Yang, D. Czaplewski, R. Mathers, G.W. Coates, H.G. Craighead, Nanotechnology 14, 1124 (2003)

    Article  ADS  Google Scholar 

  21. M. Rinaldi, F. Ruggieri, L. Lozzi, S. Santucci, J. Vac. Sci. Technol. B 27, 1829 (2009)

    Article  Google Scholar 

  22. C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh, L. Lin, Nano Lett. 10, 726 (2010)

    Article  ADS  Google Scholar 

  23. L. Sun, R.P.S. Han, J. Wang, C.T. Lim, Nanotechnology 19, 455706 (2008)

    Article  ADS  Google Scholar 

  24. A. Arinstein, R. Avrahami, E. Zussman, J. Phys. D, Appl. Phys. 42, 015507 (2009)

    Article  Google Scholar 

  25. W.W. Li, D.H. Sun, J. Huaqiao Univ. (Nat. Sci.) 30, 502 (2009)

    Google Scholar 

  26. T. Han, D.H. Reneker, A.L. Yarin, Polymer 48 (2007)

  27. C. Hellmann, J. Belardi, R. Dersch, A. Greiner, J.H. Wendorff, S. Bahnmueller, Polymer 50, 1197 (2009)

    Article  Google Scholar 

  28. H.-Y. Kim, M. Lee, K.J. Park, S. Kim, L. Mahadevan, Nano Lett. 10, 2138 (2010)

    Article  ADS  Google Scholar 

  29. W.W. Li, G.F. Zheng, X. Wang, D.H. Sun, Opt. Precis. Eng. 18, 2231 (2010)

    Google Scholar 

  30. Y. Yang, Z.D. Jia, J.A. Liu, Q. Li, L. Hou, L.M. Wang, Z.C. Guan, J. Appl. Phys. 103, 104307 (2008)

    Article  ADS  Google Scholar 

  31. P.K. Bhattacharjee, T.M. Schneider, M.P. Brenner, G.H. McKinley, G.C. Rutledge, J. Appl. Phys. 107, 044306 (2010)

    Article  ADS  Google Scholar 

  32. J.P. Yang, Y.C. Zeng, Z.G. Pei, X.H. Wang, J. Appl. Polym. Sci. 115 (2010)

  33. T. Han, D.H. Reneker, A.L. Yarin, Polymer 49, 2160 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Wang or Daoheng Sun.

Additional information

H. Wang, G. Zheng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Zheng, G., Li, W. et al. Direct-writing organic three-dimensional nanofibrous structure. Appl. Phys. A 102, 457–461 (2011). https://doi.org/10.1007/s00339-010-6180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6180-4

Keywords

Navigation