Skip to main content
Log in

Cooling rate dependence of undercooling of pure Sn single drop by fast scanning calorimetry

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Non-adiabatic fast scanning calorimetry has been developed to in-situ measure the response of single metallic drops to temperature changes in a large range of cooling rate spanning four orders of magnitude. In particular, the effect of cooling rate on the degree of undercooling of one 10 μm Sn-drop is studied. The experimental results show that the undercooling could be increased first significantly with increasing cooling rate going over to a stage of slow increase for high cooling rates, which indicates a shelf-like dependence of undercooling level on cooling rate before and after a “crossover” at a cooling rate of about 1000 K/s where two different heterogeneous mechanisms act simultaneously. First theoretical estimates are developed on the specific feature of the heterogeneous nucleation process of the effect analyzed and possible directions of further research are anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.P. Skripov, Metastable Liquids (Wiley, New York, 1974)

    Google Scholar 

  2. J.W. Christian, The Theory of Transformations in Metals and Alloys (Oxford University Press, Oxford, 1975)

    Google Scholar 

  3. I. Gutzow, J. Schmelzer, The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization (Springer, Berlin, 1995)

    Google Scholar 

  4. V.P. Skripov, V.P. Koverda, Spontaneous Crystallization of Supercooled Liquids (Nauka, Moscow, 1984) (in Russian)

    Google Scholar 

  5. J. Sestak, M. Holecek, J. Malek, Some thermodynamic, structural, and behavioral aspects of materials accentuating non-crystalline states. Nymburk, Czech Republic (2009)

  6. R. Trivedi, The role of heterogeneous nucleation on microstructure evolution in peritectic systems. Scr. Mater. 53, 47–52 (2005)

    Article  MathSciNet  Google Scholar 

  7. R. Müller, E.D. Zanotto, V.M. Fokin, Surface crystallization of silicate glasses: nucleation sites and kinetics. J. Non-Cryst. Solids 274, 208–231 (2000)

    Article  Google Scholar 

  8. G. Wilde, J.L. Sebright, J.H. Perepezko, Bulk liquid undercooling and nucleation in gold. Acta Mater. 54, 4759–4769 (2006)

    Article  Google Scholar 

  9. D. Turnbull, Under what conditions can a glass be formed? Contemp. Phys. 10, 473–488 (1969)

    Article  ADS  Google Scholar 

  10. D. Turnbull, Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022–1028 (1950)

    Article  ADS  Google Scholar 

  11. W. Kim, D. Zhang, B. Cantor, Nucleation of solidification in liquid droplets. Metall. Mater. Trans. A 22, 2487–2501 (1991)

    Article  ADS  Google Scholar 

  12. W.H. Hofmeister, M.B. Robinson, R.J. Bayuzick, Undercooling of pure metals in a containerless, microgravity environment. Appl. Phys. Lett. 49, 1342–1344 (1986)

    Article  ADS  Google Scholar 

  13. X.J. Han, N. Wang, B. Wei, Rapid eutectic growth under containerless condition. Appl. Phys. Lett. 81, 778–780 (2002)

    Article  ADS  Google Scholar 

  14. H.H. Liebermann, Rapidly Solidified Alloys: Processes, Structures, Properties, Applications (CRC Press, Boca Raton, 1993)

    Google Scholar 

  15. Q.J. Zhai, Y.L. Gao, W.B. Guan, K.D. Xu, Role of size and cooling rate in quenched droplet of SnBi eutectic alloy. Mater. Sci. Eng. A 441, 278–281 (2006)

    Article  Google Scholar 

  16. Y.L. Gao, E. Zhuravlev, C.D. Zou, B. Yang, Q.J. Zhai, C. Schick, Calorimetric measurements of undercooling in single micron sized SnAgCu particles in a wide range of cooling rates. Thermochim. Acta 482, 1–7 (2009)

    Article  Google Scholar 

  17. S.A. Adamovsky, A.A. Minakov, C. Schick, Scanning microcalorimetry at high cooling rate. Thermochim. Acta 403, 55–63 (2003)

    Article  Google Scholar 

  18. A.A. Minakov, C. Schick, Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev. Sci. Instrum. 78, 073902 (2007)

    Article  ADS  Google Scholar 

  19. B. Yang, Y.L. Gao, C.D. Zou, Q.J. Zhai, E. Zhuravlev, C. Schick, Repeated nucleation in an undercooled tin droplet by fast scanning calorimetry. Mater. Lett. 63, 2476–2478 (2009)

    Article  Google Scholar 

  20. E. Zhuravlev, C. Schick, Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim. Acta. doi:10.1016/j.tca.2010.03.019 (2010)

    Google Scholar 

  21. E. Zhuravlev, C. Schick, Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim. Acta. doi:10.1016/j.tca.2010.03.020 (2010)

    Google Scholar 

  22. A.A. Minakov, S.A. Adamovsky, C. Schick, Non-adiabatic thin-film (chip) nanocalorimetry. Thermochim. Acta 432, 177–185 (2005)

    Article  Google Scholar 

  23. V.G. Baidakov, Explosive Boiling of Superheated Cryogenic Liquids (Wiley/VCH, Berlin/Weinheim, 2007)

    Book  Google Scholar 

  24. M.J. Uttormark, J.W. Zanter, J.H. Perepezko, Repeated nucleation in an undercooled aluminum droplet. J. Cryst. Growth 177, 258–264 (1997)

    Article  ADS  Google Scholar 

  25. C.R.M. Wronski, The size dependence of the melting point of small particles of tin. Br. J. Appl. Phys. 18, 1731–1737 (1967)

    Article  ADS  Google Scholar 

  26. W.T. Kim, B. Cantor, Solidification of tin droplets embedded in an aluminium matrix. J. Mater. Sci. 26, 2868–2878 (1991)

    Article  ADS  Google Scholar 

  27. C. Buell, F. Shuck, Diffusion in the liquid Bi–Sn system. Metall. Mater. Trans. B 1, 1875–1880 (1970)

    Article  Google Scholar 

  28. S. Tamura, An empirical correlation between the atomic radius and the first ionization energy for elements. J. Mater. Sci. Lett. 15, 1678–1679 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulai Gao or C. Schick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, B., Gao, Y., Zou, C. et al. Cooling rate dependence of undercooling of pure Sn single drop by fast scanning calorimetry. Appl. Phys. A 104, 189–196 (2011). https://doi.org/10.1007/s00339-010-6100-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6100-7

Keywords

Navigation