Skip to main content
Log in

Vibrational mode assignments for bundled single-wall carbon nanotubes using Raman spectroscopy at different excitation energies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study establishes a generic fitting approach to assignment of nanotube chiralities based on radial breathing mode frequencies (ω RBM) of SWCNTs in as-produced bundles. Four laser lines with energies of 2.62 eV, 2.33 eV, 1.88 eV and 1.58 eV were employed. The observed RBM frequencies, ω RBM, were plotted as a function of the possible diameters, d, as identified from the so-called Kataura plot and reported values of the parameters A and B, where ω RBM=A/d+B, assuming that SWCNTs resonant at the respective laser frequencies dominate the spectrum. The refined values of A and B, obtained by the best fit of a linear regression between ω RBM and 1/d, were found to vary significantly for different laser frequencies. This variation is interpreted in terms of the differences in electronic properties of SWCNTs resonant at different frequencies. The assigned nanotubes match well with those identified in the Kataura plot, falling within a resonant line width of ±0.2 eV of the respective laser lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Science 275, 187 (1997)

    Article  Google Scholar 

  2. Z.H. Yu, L.E. Brus, J. Phys. Chem. B 105, 6831 (2001)

    Article  Google Scholar 

  3. C. Thomsen, S. Reich, Light Scattering in Solids IX, vol. 108 (2007), p. 115

  4. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47 (2005)

    Article  ADS  Google Scholar 

  5. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, J. Phys. Chem. C 111, 17887 (2007)

    Article  Google Scholar 

  6. S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman, Science 298, 2361 (2002)

    Article  ADS  Google Scholar 

  7. H.W. Zhu, K. Suenaga, A. Hashimoto, K. Urita, S. Iijima, Chem. Phys. Lett. 412, 116 (2005)

    Article  ADS  Google Scholar 

  8. J.C. Meyer, M. Paillet, T. Michel, A. Moreac, A. Neumann, G.S. Duesberg, S. Roth, J.L. Sauvajol, Phys. Rev. Lett. 95, 217401 (2005)

    Article  ADS  Google Scholar 

  9. J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature 391, 59 (1998)

    Article  ADS  Google Scholar 

  10. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Nature 391, 62 (1998)

    Article  ADS  Google Scholar 

  11. A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001)

    Article  ADS  Google Scholar 

  12. C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 93, 147406 (2004)

    Article  ADS  Google Scholar 

  13. C. Thomsen, H. Telg, J. Maultzsch, S. Reich, Phys. Status Solidi B 242, 1802 (2005)

    Article  ADS  Google Scholar 

  14. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992)

    Article  ADS  Google Scholar 

  15. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza, R. Saito, Carbon 40, 2043 (2002)

    Article  Google Scholar 

  16. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555 (1999)

    Article  Google Scholar 

  17. P.W. Ruch, L.J. Hardwick, M. Hahn, A. Foelske, R. Kotz, A. Wokaun, Carbon 47, 38 (2009)

    Article  Google Scholar 

  18. B.R. Priya, H.J. Byrne, Phys. Status Solidi (b) 245, 1964 (2008)

    Article  ADS  Google Scholar 

  19. Z.H. Yu, L. Brus, J. Phys. Chem. B 105, 1123 (2001)

    Article  Google Scholar 

  20. E. Gregan, S.M. Keogh, A. Maguire, T.G. Hedderman, L.O. Neill, G. Chambers, H.J. Byrne, Carbon 42, 1031 (2004)

    Article  Google Scholar 

  21. H. Telg, J. Maultzsch, S. Reich, F. Hennrich, C. Thomsen, Phys. Rev. Lett. 93, 177401 (2004)

    Article  ADS  Google Scholar 

  22. P.T. Araujo, S.K. Doorn, S. Kilina, S. Tretiak, E. Einarsson, S. Maruyama, H. Chacham, M.A. Pimenta, A. Jorio, Phys. Rev. Lett. 98, 067401 (2007)

    Article  ADS  Google Scholar 

  23. M.S. Strano, S.K. Doorn, E.H. Haroz, C. Kittrell, R.H. Hauge, R.E. Smalley, Nano Lett. 3, 1091 (2003)

    Article  ADS  Google Scholar 

  24. M. Milnera, J. Kurti, M. Hulman, H. Kuzmany, Phys. Rev. Lett. 84, 1324 (2000)

    Article  ADS  Google Scholar 

  25. P.T. Araujo, I.O. Maciel, P.B.C. Pesce, M.A. Pimenta, S.K. Doorn, H. Qian, A. Hartschuh, M. Steiner, L. Grigorian, K. Hata, A. Jorio, Phys. Rev. B 77, 241403(R) (2008)

    ADS  Google Scholar 

  26. G.D. Mahan, Phys. Rev. B 65, 235402 (2002)

    Article  ADS  Google Scholar 

  27. J. Kurti, V. Zolyomi, M. Kertesz, G.Y. Sun, New J. Phys. 5, 125 (2003)

    Article  ADS  Google Scholar 

  28. T. Chang, Acta Mech. Sin. 23, 159 (2007)

    Article  MATH  ADS  Google Scholar 

  29. T. Michel, M. Paillet, J.C. Meyer, V.N. Popov, L. Henrard, J.L. Sauvajol, Phys. Rev. B 75, 155432 (2007)

    Article  ADS  Google Scholar 

  30. M. Paillet, T. Michel, J.C. Meyer, V.N. Popov, L. Henrard, S. Roth, J.L. Sauvajol, Phys. Rev. Lett. 96, 257401 (2006)

    Article  ADS  Google Scholar 

  31. R.B. Weisman, S.M. Bachilo, Nano Lett. 3, 1235 (2003)

    Article  ADS  Google Scholar 

  32. P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalle, Chem. Phys. Lett. 313, 91 (1999)

    Article  ADS  Google Scholar 

  33. Q.H. Cheng, S. Debnath, E. Gregan, H.J. Byrne, Phys. Status Solidi B 245, 1947 (2008)

    Article  ADS  Google Scholar 

  34. A. Jorio, C. Fantini, M.S.S. Dantas, M.A. Pimenta, A.G. Souza Filho, Ge.G. Samsonidze, V.W. Brar, Phys. Rev. B 66, 115411 (2002)

    Article  ADS  Google Scholar 

  35. N. Nair, M.L. Usrey, W.J. Kim, R.D. Braatz, M.S. Strano, Anal. Chem. 78, 7689 (2006)

    Article  Google Scholar 

  36. Y.Y. Zhang, H. Son, J. Zhang, J. Kong, Z.F. Liu, J. Phys. Chem. C 111, 1988 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaohuan Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Q., Debnath, S., Gregan, E. et al. Vibrational mode assignments for bundled single-wall carbon nanotubes using Raman spectroscopy at different excitation energies. Appl. Phys. A 102, 309–317 (2011). https://doi.org/10.1007/s00339-010-5997-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5997-1

Keywords

Navigation