Skip to main content
Log in

Pyroxene inclusions in paleo-Christian mosaic tesserae: a new tool for constraining the glass manufacturing temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The mineral inclusions of two orange glass tesserae from paleo-Christian mosaics were investigated in order to derive the melting temperature reached during their production (sourced from Padua and Vicenza, Veneto region, Italy). In particular, clinopyroxene crystals were studied by single-crystal X-ray diffraction and electron microprobe WDS analysis. The crystals show C2/c symmetry, typical of disordered Ca/Na and Mg/Al distributions indicating high-temperature of formation (>700°C). The cation site populations were obtained by combining results from the two experimental techniques enabled us to derive the following stoichiometric formula:

$$\begin{array}{l}{}^{M2}[\mathrm{Ca}_{0.819}\mathrm{Na}_{0.172}\mathrm{Mn}_{0.006}\mathrm{K}_{0.003}]{}^{M1}[\mathrm{Mg}_{0.765}\mathrm{Fe}^{3+}_{0.210}\\[3pt]\quad{}\mathrm{Cu}_{0.015}\mathrm{Ti}_{0.006}\mathrm{Zn}_{0.006}]{}^{T}[\mathrm{Si}_{1.933}\mathrm{Al}_{0.037}\mathrm{Sn}_{0.024}]\mathrm{O}_{6}\end{array}$$

This composition is very close to an ideal diopside (Di, CaMgSi2O6)–aegirine (Ae, NaFe3+Si2O6) solid solution (with composition Di80Ae20). The crystal-structure refinement shows that the Mn, K, Cu, Ti, Zn, Al and Sn “impurities” do not affect the bond lengths and atomic coordinates expected for a pure Di80Ae20. Previous studies report a temperature of formation of about 1250°C, which can be directly applied to the present case, thus inferring the same temperature for the production of the orange glass tesserae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.C. Freestone, in AIHV, Annales du 15 e Congrés, New York–Corning, 2001, press in Nottingham (2003), pp. 111–115

  2. J. Henderson, S.D. McLoughlin, D.S. McPhail, Archaeometry 46, 439–468 (2004)

    Article  Google Scholar 

  3. A. Silvestri, G. Molin, G. Salviulo, Archaeometry 47, 797–816 (2005)

    Article  Google Scholar 

  4. A.J. Shortland, K. Erekim, Archaeometry 48, 581–603 (2006)

    Article  Google Scholar 

  5. M. Lahlil, I. Biron, L. Galoisy, G. Morin, Appl. Phys. A 92, 109–116 (2008)

    Article  ADS  Google Scholar 

  6. A. Silvestri, G. Molin, G. Salviulo, R. Schievenin, Archaeometry 48, 415–432 (2006)

    Article  Google Scholar 

  7. Stoe and Cie, Crystal Optimisation for Numerical Absorption Correction (Stoe and Cie GmbH, Darmstadt, 1999)

    Google Scholar 

  8. G.M. Sheldric, SHELX, programs for Crystal Structure Analysis. Gottingen, Germany (1997)

  9. F. Nestola, M. Tribaudino, T.B. Ballaran, C. Liebske, M. Bruno, Am. Mineral. 92, 1492–1501 (2007)

    Article  Google Scholar 

  10. A.J.H. Wilson, International Tables for Crystallography, vol. C, (Kluwer Academic, Dordrecht, 1995)

    Google Scholar 

  11. F. Nestola, M. Longo, C. McCannon, T. Boffa Ballaran, Am. Mineral. 92, 1242–1245 (2007)

    Article  Google Scholar 

  12. I.C. Freestone, in British Museum Occasional Paper 56, Early Vitreous Materials, ed. by M. Bimson M., I.C. Freestone (1987), pp. 173–191

  13. I. Nakai, C. Numako, H. Hosono, K. Yamasaki, J. Am. Ceram. Soc. 82, 689–695 (1999)

    Article  Google Scholar 

  14. M.C. Domeneghetti, M. Zema, V. Tazzoli, Am. Mineral. 90, 1816–1823 (2005)

    Article  Google Scholar 

  15. L. Bindi, O.G. Safonov, V.O. Yapaskurt, L.L. Perchuk, S. Menchetti, Am. Mineral. 88, 464–468 (2003)

    Google Scholar 

  16. L. Bindi, R.T. Downs, G.E. Harlow, O.G. Safonov, Y.A. Litvin, L.L. Perchuk, H. Uchida, S. Menchetti, Am. Mineral. 91, 802–808 (2006)

    Article  Google Scholar 

  17. A.C. McCarthy, R.T. Downs, R.M. Thompson, G.J. Redhammer, Am. Mineral. 93, 1829–1837 (2008)

    Article  Google Scholar 

  18. R.M. Thompson, R.T. Downs, Am. Mineral. 93, 177–186 (2008)

    Article  Google Scholar 

  19. R.D. Shannon, Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  20. K. Yagi, Am. Mineral., 976–1000 (1966)

  21. W.D. Carlson, Am. Mineral. 73, 232–241 (1988)

    Google Scholar 

  22. W.D. Carlson, Am. Mineral. 74, 325–332 (1989)

    Google Scholar 

  23. M. Verità, in Il ricettario Darduin, un codice vetrario del seicento trascritto e commentato, ed by R. Barovier Mentasti, M. Verità, A. Tucci (Arsenale Editrice, Venezia, 1986), pp. 25–34,

    Google Scholar 

  24. P.A. Bingham, C.M. Jackson, J. Archaeol, Sci. 35, 302–309 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Nestola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonietto, S., Nestola, F., Redhammer, G.J. et al. Pyroxene inclusions in paleo-Christian mosaic tesserae: a new tool for constraining the glass manufacturing temperature. Appl. Phys. A 103, 207–212 (2011). https://doi.org/10.1007/s00339-010-5996-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5996-2

Keywords

Navigation