Skip to main content
Log in

Method for measuring chemical diffusion coefficients in solids

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Experiments were performed with temperature programmed desorption of hydrogen and deuterium adsorbates on small platinum spheres. Beyond the expected desorption peak of these adsorbates at around 300 K sample temperature an additional desorption peak at higher temperatures was observed. This additional peak is explained by the diffusion of hydrogen or deuterium atoms from the inside of the spheres to their surfaces with final desorption from these surfaces. The visibility of this second high temperature desorption peak is supported by a small diameter of the platinum spheres. Platinum spheres with diameters around 64 μm were used. The sample temperature at which the second peak was observed depends on the parameters: diameter of the platinum spheres, heating rate of the sample and chemical diffusion coefficient of hydrogen or deuterium in platinum. A theory, which assumes that the chemical diffusion coefficient can be described with an Arrhenius ansatz, was developed to simulate the occurrence of the second peak. The combination of these kinds of experiments with the theory gives a method to measure chemical diffusion coefficients. This method can be called temperature programmed diffusion. At 510 K sample temperature the diffusion coefficient 1.61×10−12 m2/s of hydrogen in platinum and the diffusion coefficient 1.40×10−12 m2/s of deuterium in platinum was measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A. Redhead, Vacuum 12, 203 (1962)

    Article  Google Scholar 

  2. C. Krishana, S.J. Qi, J.A. Incavo, W.L. Reuter, V. Jain, U.S. Patent, 5,627,329 (1995)

    Google Scholar 

  3. Y. Ebisuzaki, W.J. Kass, M. O’Keeffe, J. Chem. Phys. 49, 3329 (1968)

    Article  ADS  Google Scholar 

  4. H. Katsuta, R.B. McLellan, J. Phys. Chem. Solids 40, 697 (1979)

    Article  ADS  Google Scholar 

  5. E. Gileadi, M.A. Fullenwider, J.O’M. Bockris, J. Electrochem. Soc. 113, 926 (1966)

    Article  Google Scholar 

  6. T. Ishikawa, R.B. McLellan, Acta Metall. 33, 1979 (1985)

    Article  Google Scholar 

  7. J. Čermák, A. Kufudakis, G. Gardavská, J. Less-Common Met. 63, P1 (1979)

    Article  Google Scholar 

  8. H. Ibach, Physics of Surfaces and Interfaces (Springer, Berlin, Heidelberg, 2006), p. 273

    Google Scholar 

  9. F.J. Castro, G. Meyer, Rev. Sci. Instrum. 71, 2131 (2000)

    Article  ADS  Google Scholar 

  10. F. von Zeppelin, M. Haluška, M. Hirscher, Thermochim. Acta 404, 251 (2003)

    Article  Google Scholar 

  11. R. Ducros, R.P. Merrill, Surf. Sci. 55, 227 (1976)

    Article  ADS  Google Scholar 

  12. H.S. Carlslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959), p. 234

    Google Scholar 

  13. K. Christmann, G. Ertel, Surf. Sci. 60, 365 (1976)

    Article  ADS  Google Scholar 

  14. K. Christmann, private communication (2010)

  15. C. Zener, J. Appl. Phys. 22, 372 (1951)

    Article  ADS  Google Scholar 

  16. A.M. Baró, H. Ibach, H.D. Bruchmann, Surf. Sci. 88, 384 (1979)

    Article  ADS  Google Scholar 

  17. S. Hong, T.S. Rahman, R. Heid, K.P. Bohnen, Surf. Sci. 587, 41 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Neuhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuhaus, D. Method for measuring chemical diffusion coefficients in solids. Appl. Phys. A 100, 991–1000 (2010). https://doi.org/10.1007/s00339-010-5956-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5956-x

Keywords

Navigation