Skip to main content
Log in

Characterization of Supported Platinum Nanocrystallites with Different Sizes and These Effects on a Model Reaction

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Different nanosized platinum crystallites dispersed on a silica support have been extensively characterized with the help of probe molecule adsorption and instrumental measurements, and their reactivity to the reduction of N2O by H2 as a model reaction has been studied. All measurements using different techniques, i.e., H2–N2O titration, H2 chemisorption, X-ray diffraction and high-resolution transmission electron microscopy, disclosed that the platinum system consisted of nanocrystallites with average sizes of ca. 1.1–22.2 nm, depending on the thermal excursion. In situ diffuse reflectance infrared Fourier transform spectra of CO adsorbed on nanodispersed platinum particles with the indicated range of their sizes after adsorptive dissociation of N2O at 90 °C showed absorption bands near 2188, 2075, and 2088 cm−1 even on the biggest platinum nanocrystallites and these had also some low coordination sites giving the 2188 cm−1 vibration, proposing that all the platinum nanoparticles could exist in three different coordination environments. The reduction of N2O by H2 at 110 °C yielded no significant difference in turnover frequency between different platinum nanocrystallite sizes, disclosing that this reaction was structure-insensitive. The turnover frequency in the model reaction at 125 °C over the finest platinum size sample gave no principal distinction between flowing mixtures containing N2O and H2 whose absolute concentrations varied. All these low temperature reactions could be, to a good approximation, explained by an overall stoichiometry of N2O:H2 = 1:1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Behafarid F, Ono LK, Mostafa S, Croy JR, Shafai G, Hong S, Rahman TS, Bare SR, Cuenya BR (2012) Phys Chem Chem Phys 14:11766–11779

    Article  CAS  Google Scholar 

  2. Rioux RM, Song H, Yang P, Somorjai GA (2008) In: Corain B, Schmid G, Toshima N (eds) Metal nanoclusters in catalysis and materials science: the issue of size control. Elsevier, Amsterdam

    Google Scholar 

  3. Jin R, Cao YC, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Nature 425:487–490

    Article  CAS  Google Scholar 

  4. Ozin GA (1992) Adv Mater 4:612–649

    Article  CAS  Google Scholar 

  5. Klasovsky F, Claus P (2008) In: Corain B, Schmid G, Toshima N (eds) Metal nanoclusters in catalysis and materials science: the issue of size control. Elsevier, Amsterdam

    Google Scholar 

  6. Sieben JM, Duarte MME, Mayer CE (2008) J Appl Electrochem 38:483–490

    Article  CAS  Google Scholar 

  7. Xu T, Lin C, Wang C, Brewe DL, Ito Y, Lu J (2010) J Am Chem Soc 132:2151–2153

    Article  CAS  Google Scholar 

  8. Kim MH, Ebner JR, Friedman RM, Vannice MA (2001) J Catal 204:348–357

    Article  CAS  Google Scholar 

  9. Kim MH, Ebner JR, Friedman RM, Vannice MA (2002) J Catal 208:381–392

    Article  CAS  Google Scholar 

  10. Yang WH, Kim MH (2006) Korean J Chem Eng 23:908–918

    Article  CAS  Google Scholar 

  11. Benson JE, Boudart M (1965) J Catal 4:704–710

    Article  CAS  Google Scholar 

  12. Wilson GR, Hall WK (1970) J Catal 17:190–206

    Article  CAS  Google Scholar 

  13. Vannice MA, Hasselbring LC, Sen B (1985) J Catal 95:57–70

    Article  CAS  Google Scholar 

  14. Kim MH, Cho IH, Park JH, Choi SO, Lee IS (2016) J Por Mater 23:291–299

    Article  CAS  Google Scholar 

  15. Meyer CI, Regenhardt SA, Zelin J, Sebastian V, Marchi AJ, Garetto TF (2016) Top Catal 59:168–177

    Article  CAS  Google Scholar 

  16. Hyde T (2008) Platin Met Rev 52:129–130

    Article  Google Scholar 

  17. Zhuravlev LT (2000) Colloid Surf A 173:1–38

    Article  CAS  Google Scholar 

  18. Comas-Vives A (2016) Phys Chem Chem Phys 18:7475–7482

    Article  CAS  Google Scholar 

  19. Musso F, Sodupe M, Corno M, Ugliengo P (2009) J Phys Chem C 113:17876–17884

    Article  CAS  Google Scholar 

  20. Hadjiivanov K, Vayssilov GN (2002) Adv Catal 47:307–511

    CAS  Google Scholar 

  21. Panayotov D, Mihaylov M, Nihtianova D, Spassov T, Hadjiivanov K (2014) Phys Chem Chem Phys 16:13136–13144

    Article  CAS  Google Scholar 

  22. Hayden BE, Kretschmar K, Bradshaw AM, Greenler RG (1985) Surf Sci 149:394–406

    Article  CAS  Google Scholar 

  23. Somodi F, Werner S, Peng Z, Getsoian AB, Mlinar AN, Yeo BS, Bell AT (2012) Langmuir 28:3345–3349

    Article  CAS  Google Scholar 

  24. Brandt RK, Hughes MR, Bourget LP, Truszkowska K, Greenler RG (1993) Surf Sci 286:15–25

    Article  CAS  Google Scholar 

  25. Bare SR, Hofman P, King DA (1984) Surf Sci 144:347–369

    Article  CAS  Google Scholar 

  26. Hadjiivanov K (1998) J Chem Soc Faraday Trans 94:1901–1904

    Article  CAS  Google Scholar 

  27. Balakrishnan K, Sachdev A, Schwank J (1990) J Catal 121:441–455

    Article  CAS  Google Scholar 

  28. Barshad Y, Zhou X, Gulari E (1985) J Catal 94:128–141

    Article  CAS  Google Scholar 

  29. Kappers MJ, van der Maas JH (1991) Catal Lett 10:365–373

    Article  CAS  Google Scholar 

  30. Kim MH, Vannice MA, Kim DG, Lee JH (2003) Korean J Chem Eng 20:247–255

    Article  CAS  Google Scholar 

  31. Kondratenko VA, Hahn T, Kondratenko EV (2012) ChemCatChem 4:408–414

    Article  CAS  Google Scholar 

  32. Kondratenko EV, Ovsitser O (2008) Angew Chem Int Ed 47:3227–3229

    Article  CAS  Google Scholar 

  33. Presto AA, Granite EJ (2008) Platin Met Rev 52:144–154

    Article  CAS  Google Scholar 

  34. van Santen RA (2009) Acc Chem Res 42:57–66

    Article  Google Scholar 

  35. Burch R, Attard GA, Daniells ST, Jenkins DJ, Breen JP, Hu P (2002) Chem Commun 22:2738–2739

    Article  Google Scholar 

  36. Burch R, Daniells ST, Breen JP, Hu P (2004) Catal Lett 94:103–108

    Article  CAS  Google Scholar 

  37. Srinivas ST, Rao PK (1994) J Catal 148:470–477

    Article  CAS  Google Scholar 

  38. Mitchell PCH, Ramirez-Cuesta AJ, Parker SF, Tomkinson J, Thompsett D (2003) J Phys Chem B 107:6838–6845

    Article  CAS  Google Scholar 

  39. Lenz DH, Conner WC Jr, Fraissard JP (1989) 117:281–289

Download references

Acknowledgements

A partial grant-in-aid via GAIA Grant # 2016000550002 was provided for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Hyeon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.H., Park, J.H. & Hong, YS. Characterization of Supported Platinum Nanocrystallites with Different Sizes and These Effects on a Model Reaction. Top Catal 60, 773–781 (2017). https://doi.org/10.1007/s11244-017-0775-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0775-3

Keywords

Navigation