Skip to main content
Log in

Near-critical nanosecond laser-induced phase explosion on graphite surface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Optical reflectivity, removal rate and ablative recoil pressure magnitudes were measured as a function of laser fluence during high-power UV nanosecond laser ablation of graphite. At low fluences only melting and weak surface vaporization of molten carbon were observed. At moderate fluences there is a very narrow fluence interval where the reflected fluence starts to saturate, while the removal rate and ablative recoil pressure rise drastically in a correlated manner, indicating the onset of a near-critical surface phase explosion. Then, at higher fluences the reflected fluence, removal rate and recoil pressure saturate with an appearance of a luminous plume, altogether indicating negligible specular reflectance and absorbance on the target surface due to its complete screening by the highly-absorbing laser plume. The overall strong correlation between the removal rate and recoil pressure magnitudes may indicate rather quasi-continuous removal of the near-critical superheated molten carbon layer by a propagating unloading wave in the absence of a crucial sub-surface temperature maximum in the layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2000)

    Google Scholar 

  2. J.F. Ready, Effects of High Power Laser Radiation (Academic Press, San Diego, 1971)

    Google Scholar 

  3. S.I. Anisimov, V.A. Khokhlov, Instabilities in Laser-Matter Interaction (CRC Press, Boca Raton, 1995)

    Google Scholar 

  4. A. Miotello, R. Kelly, Appl. Phys. Lett. 67, 3535 (1995)

    Article  ADS  Google Scholar 

  5. N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199 (2001)

    Article  ADS  Google Scholar 

  6. S.I. Kudryashov, Laser-induced surface and bulk near-critical liquid-vapor phase transformations: basic concepts and recent advances, in Phase Transitions Induced by Short Laser Pulses, ed. by G.A. Shafeev (Nova Publishers, New York, 2009), Chap. 1

    Google Scholar 

  7. J.H. Yoo, S.H. Jeong, X.L. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 76, 783 (2000)

    Article  ADS  Google Scholar 

  8. D. Kim, C.P. Grigoropoulos, Appl. Surf. Sci. 127–129, 53 (1998)

    Article  Google Scholar 

  9. S.I. Kudryashov, S.G. Ionov, N.B. Zorov, High Energy Chem. 34, 101 (2000)

    Article  Google Scholar 

  10. N.G. Basov, B.A. Boiko, V.A. Dement’ev, O.N. Krokhin, G.V. Sklizkov, Sov. Phys. JETP 24, 659 (1967)

    ADS  Google Scholar 

  11. C.D. David, H. Weichel, J. Appl. Phys. 40, 3674 (1969)

    Article  ADS  Google Scholar 

  12. V.P. Skripov, E.N. Sinitsyn, P.A. Pavlov, G.V. Ermakov, G.N. Muratov, N.V. Bulanov, V.G. Baidakov, Thermophysical Properties of Liquids in the Metastable State (Gordon and Breach, New York, 1988)

    Google Scholar 

  13. P.G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996)

    Google Scholar 

  14. J. Bosbach, C. Hendrich, F. Stietz, T. Vartanyan, F. Träger, Phys. Rev. Lett. 89, 257404 (2002)

    Article  ADS  Google Scholar 

  15. A.V. Baitin, A.A. Lebedev, S.V. Romanenko, V.N. Senchenko, M.A. Sheindlin, High Temp. High Press. 21, 157 (1990)

    Google Scholar 

  16. R. Ahuja, S. Auluck, J.M. Wills, M. Alouani, B. Johansson, O. Eriksson, Phys. Rev. B 55, 4999 (1997)

    Article  ADS  Google Scholar 

  17. A.R. Ubbelohde, F.A. Lewis, Graphite and Its Crystal Compounds (Clarendon Press, Oxford, 1960)

    Google Scholar 

  18. M. Musella, C. Ronchi, M. Brykin, M. Sheindlin, J. Appl. Phys. 84, 2530 (1998)

    Article  ADS  Google Scholar 

  19. M.A. Sheindlin, Teplofiz. Vys. Temp. 19, 630 (1981)

    Google Scholar 

  20. S.I. Kudryashov, RFBR annual report to the project N 08-08-00756a (2008)

  21. E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, San Diego, 1991)

    Google Scholar 

  22. N.G. Basov, V.A. Boiko, O.N. Krokhin, O.G. Semenov, G.V. Sklizkov, Z. Teh. Fiz. 13, 1581 (1969)

    Google Scholar 

  23. S.I. Kudryashov, A.A. Karabutov, N.B. Zorov, Mendeleev Commun. 1, 6 (1998)

    Article  Google Scholar 

  24. V.E. Gusev, A.A. Karabutov, Laser Optiacosutcs (AIP, New York, 1993)

    Google Scholar 

  25. Q.M. Lu, S.S. Mao, X.L. Mao, R.E. Russo, Appl. Phys. Lett. 80, 3072 (2002)

    Article  ADS  Google Scholar 

  26. S. Paul, S.I. Kudryashov, K. Lyon, S.D. Allen, J. Appl. Phys. 101, 043106 (2007)

    Article  ADS  Google Scholar 

  27. A.A. Ionin, S.I. Kudryashov, L.V. Seleznev (unpublished results)

  28. E.G. Gamaly, A.V. Rode, B. Luther-Davies, Appl. Phys. A 69, S121 (1999)

    ADS  Google Scholar 

  29. N.I. Koroteev, I.L. Shumay, Physics of High-Power Laser Radiation (Nauka, Moscow, 1991)

    Google Scholar 

  30. S.I. Kudryashov, Thermodynamic characteristics of metastable liquid-vapor equilibrium of carbon during laser vaporization of polycrystalline graphite. Ph.D. thesis Moscow State University (1999)

  31. S.I. Anisimov, Ya.A. Imas, G.S. Romanov, Yu.V. Khodyko, Action of High-Power Laser Radiation on Metals (Nauka, Moscow, 1970) (in Russian)

    Google Scholar 

  32. E.I. Asinovskii, A.V. Kirillin, A.V. Kostanovskii, Phys. Usp. 45, 869 (2002)

    Article  ADS  Google Scholar 

  33. V.P. Glushko (ed.), Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1979)

    Google Scholar 

  34. M. Joseph, N. Sivakumar, P. Manoravi, Carbon 40, 2031 (2002) and references therein

    Article  Google Scholar 

  35. E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 1643 (2004)

    ADS  Google Scholar 

  36. K. Sokoloswski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, A. Cavalleri, D. von der Linde, Proc. SPIE 3343, 46 (1998)

    Article  ADS  Google Scholar 

  37. L.D. Landau, E.M. Lifshitz, Theoretical Physics: Hydrodynamics, vol. 6 (Nauka, Moscow, 1986) (in Russian), Chap. VIII

    Google Scholar 

  38. W. Jones, N.H. March, Theoretical Solid State Physics: Perfect Lattices in Equilibrium (Dover, New York, 1985)

    Google Scholar 

  39. M. Togaya, Phys. Rev. Lett. 79, 2474 (1997)

    Article  ADS  Google Scholar 

  40. J.N. Glosli, F.H. Ree, Phys. Rev. Lett. 82, 4659 (1999)

    Article  ADS  Google Scholar 

  41. A. Cavalleri, K. Sokolowski-Tinten, D. von der Linde, I. Spagnolatti, M. Bernasconi, G. Benedek, A. Podestà, P. Milani, Europhys. Lett. 57, 281 (2002)

    Article  ADS  Google Scholar 

  42. S.I. Anisimov, A.M. Bonch-Bruevich, M.A. Il’yashevich, Ya.A. Imas, N.A. Pavlenko, G.S. Romanov, Sov. Phys. Tech. Phys. 11, 935 (1967)

    Google Scholar 

  43. S.I. Kudryashov, A.A. Karabutov, V.I. Emel’yanov, N.B. Zorov, Mendeleev Commun. 6, 224 (1997)

    Article  Google Scholar 

  44. A.A. Samokhin, V.I. Vovchenko, N.N. Il’ichev, P.V. Shapkin, Laser Phys. 19, 1187 (2009)

    Article  ADS  Google Scholar 

  45. S.I. Anisimov, N.A. Inogamov, A.M. Oparin, B. Rethfeld, M. Ogawa, V. Fortov, Appl. Phys. A 69, 617 (1999)

    Article  ADS  Google Scholar 

  46. L.D. Landau, E.M. Lifshitz, Theoretical Physics: Theory of Elasticity, vol. 7 (Nauka, Moscow, 1987) (in Russian), Chap. V

    Google Scholar 

  47. A.A. Samokhin, in Proceedings of General Physics Institute of Soviet Academy of Sciences, vol. 13 (1990), p. 74

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kudryashov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryashov, S.I., Tikhov, A.A. & Zvorykin, V.D. Near-critical nanosecond laser-induced phase explosion on graphite surface. Appl. Phys. A 102, 493–499 (2011). https://doi.org/10.1007/s00339-010-5954-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5954-z

Keywords

Navigation