Skip to main content
Log in

Thermal melting and ablation dynamics on a femtosecond laser-heated highly-oriented pyrolytic graphite surface

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Time-resolved optical reflection microscopy studies demonstrate spatiotemporal dynamics of melting and ablation of graphite surface molten by single IR femtosecond laser pulses, which are revealed by monitoring picosecond oscillations of the probe reflectivity modulated by transient acoustic reverberations in the surface melt. Temporal periods and amplitudes of the reverberations are affected through transient variations of melt thickness and acoustic impedance by melting, thermal expansion, spallation and fragmentation processes, thus enabling quantitative evaluation of their contributions and basic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Orekhov and V. V. Stegailov, Carbon 87, 358 (2015).

    Article  Google Scholar 

  2. D. H. Reitze, H. Ahn, and M. C. Downer, Phys. Rev. B 45, 2677 (1992)

    Article  ADS  Google Scholar 

  3. T. Dallas, M. Holtz, H. Ahn, and M. C. Downer, Phys. Rev. B 49, 796 (1994).

    Article  ADS  Google Scholar 

  4. K. Sokolowski-Tinten, S. Kudryashov, V. Temnov, J. Bialkowski, M. Boing, D. von der Linde, A. Cavalleri, H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, Springer Ser. Chem. Phys. 66, 425 (2000).

    Article  Google Scholar 

  5. M. D. Shirk and P. A. Molian, Carbon 39, 1183 (2001).

    Article  Google Scholar 

  6. M. Lenner, A. Kaplan, C. Huchon, and R. E. Palmer, Phys. Rev. B 79, 184105 (2009).

    Article  ADS  Google Scholar 

  7. S. I. Kudryashov and V. I. Emel’yanov, JETP Lett. 73, 487 (2001).

    Article  ADS  Google Scholar 

  8. S. I. Ashitkov, M. B. Agranat, P. S. Kondratenko, S. I. Anisimov, V. E. Fortov, V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, JETP Lett. 75, 96 (2002).

    Article  ADS  Google Scholar 

  9. F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, Phys. Rev. Lett. 100, 035501 (2008).

    Article  ADS  Google Scholar 

  10. R. K. Raman, Y. Murooka, C. Ruan, T. Yang, S. Berber, and D. Tománek, Phys. Rev. Lett. 101, 077401 (2008).

    Article  ADS  Google Scholar 

  11. K. Nishioka and K. Nasu, Phys. Rev. B 80, 235420 (2009).

    Article  ADS  Google Scholar 

  12. T. Sano, K. Takahashi, O. Sakata, M. Okoshi, N. Inoue, K. F. Kobayashi, and A. Hirose, J. Phys. D: Conf. Ser. 165, 012019 (2009).

    ADS  Google Scholar 

  13. Y. Miyamoto, H. Zhang, and D. Tomanek, Phys. Rev. Lett. 104, 208302 (2010).

    Article  ADS  Google Scholar 

  14. G. Sciani and R. J. D. Miller, Rep. Prog. Phys. 74, 096101 (2011).

    Article  ADS  Google Scholar 

  15. M. C. Downer, R. L. Fork, and C. V. Shank, J. Opt. Soc. Am. B 2, 595 (1985)

    Article  ADS  Google Scholar 

  16. D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, Appl. Surf. Sci. 109–110, 1 (1997).

    Article  Google Scholar 

  17. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, J. Opt. Soc. Am. B 23, 1954 (2006).

    Article  ADS  Google Scholar 

  18. D. Perez and L. J. Lewis, Phys. Rev. B 67, 184102 (2003)

    Article  ADS  Google Scholar 

  19. E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, Appl. Phys. A 79, 1643 (2004)

    ADS  Google Scholar 

  20. A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, Phys. Rev. B 78, 045437 (2008).

    Article  ADS  Google Scholar 

  21. P. Yu and M. Cardona, Fundamentals of Semiconductor Physics (Springer, New York, 1996).

    Book  MATH  Google Scholar 

  22. H. Enquist, H. Navirian, T. N. Hansen, A. M. Lindenberg, P. Sondhauss, O. Synnergren, J. S. Wark, and J. Larsson, Phys. Rev. Lett. 98, 225502 (2007).

    Article  ADS  Google Scholar 

  23. M. Nicoul, V. Shymanovich, A. Tarasevich, D. von der Linde, and K. Sokolowski-Tinten, Appl. Phys. Lett. 98, 191902 (2011).

    Article  ADS  Google Scholar 

  24. Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, Orlando, 1998).

  25. S. I. Kudryashov, Cand. Sci. (Phys. Math.) Dissertation (Moscow State Univ., Moscow, 1999).

    Google Scholar 

  26. A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, and D. V. Sinitsyn, JETP Lett. 94, 753 (2011).

    Article  ADS  Google Scholar 

  27. N. L. Coleburn, J. Chem. Phys. 40, 71 (1964).

    Article  ADS  Google Scholar 

  28. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, New York, 1993).

    Google Scholar 

  29. N. Yoshimoto, H. Shibata, M. Yoshizawa, K. Suzuki, K. Shigematsu, and S. Kimura, Jpn. J. Appl. Phys. 35, 2754 (1996).

    Article  ADS  Google Scholar 

  30. R. Nüske, C. von Korff Schmising, A. Jurgilaitis, H. Enquist, H. Navirian, P. Sondhauss, and J. Larsson, Rev. Sci. Instrum. 81, 013106 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kudryashov.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 8, pp. 587–592.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionin, A.A., Kudryashov, S.I. Thermal melting and ablation dynamics on a femtosecond laser-heated highly-oriented pyrolytic graphite surface. Jetp Lett. 104, 573–577 (2016). https://doi.org/10.1134/S0021364016200042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016200042

Navigation