Skip to main content
Log in

Investigation of droplet formation in pulsed Nd:YAG laser deposition of metals and silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the process of pulsed laser deposition of nickel (Ni) and ruthenium (Ru) thin films, the occurrence of phase explosion in ablation was found to affect the deposition rate and enhance the optical emissions from the plasma plume. Faster thin-film growth rates coincide with the onset of phase explosion as a result of superheating and/or sub-surface boiling which also increased the particulates found on the thin-film surface. These particulates were predominantly droplets which may not be round but flattened and also debris for the case of silicon (Si) ablation. The droplets from Ni and Ru thin films were compared in terms of size distribution and number density for different laser fluences. The origins of these particulates were correlated to the bubble and ripple formations on the targets while the transfer to the thin film surface was attributed to the laser-induced ejection from the targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Chrisey, G.K. Hubler, Pulsed-Laser Deposition of Thin Films (Wiley, New York, 1994)

    Google Scholar 

  2. D. Bauerle, Laser Processing and Chemistry (Springer, Berlin, 2000)

    Google Scholar 

  3. E. van de Riet, C.J.C.M. Nillesen, J. Dieleman, J. Appl. Phys. 74, 1993 (2008)

    Google Scholar 

  4. I. Weaver, C.L.S. Lewis, Appl. Surf. Sci. 96–98, 663 (1996)

    Article  Google Scholar 

  5. T. Szörényi, Z. Kántor, Z. Tóth, P. Heszler, Appl. Surf. Sci. 138–139, 275 (1999)

    Article  Google Scholar 

  6. J. Heitz, E. Arenholz, J.T. Dickinson, Appl. Phys. A 69, S467 (1999)

    Article  ADS  Google Scholar 

  7. T. Hino, S. Mustofa, M. Nishida, T. Araki, Vacuum 70, 47 (2003)

    Article  Google Scholar 

  8. N.M. Bulgakova, L.A. Zakharov, A.A. Onischuk, V.G. Kiselev, A.M. Baklanov, J. Phys. D, Appl. Phys. 42, 065504 (2009)

    Article  ADS  Google Scholar 

  9. D.W. Kim, S.M. Oh, S.H. Lee, T.W. Noh, Jpn. J. Appl. Phys. 37, 2000 (2016)

    Google Scholar 

  10. D. Lubben, S.A. Barrett, K. Suzuki, S. Gorbatkin, J.E. Greene, J. Vac. Sci. Technol. B 3, 968 (1985)

    Article  Google Scholar 

  11. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, L. Lanotte, Appl. Phys. Lett. 84, 4502 (2004)

    Article  ADS  Google Scholar 

  12. B. Liu, Z. Hu, Y. Che, Y. Chen, X. Pan, Appl. Phys. Lett. 90, 044103 (2007)

    Article  ADS  Google Scholar 

  13. S. Amoruso, G. Ausanio, A.C. Barone, R. Bruzzse, C. Campana, X. Wang, Appl. Surf. Sci. 254, 1012 (2007)

    Article  ADS  Google Scholar 

  14. O.G. Noël, R.G.-S. Roman, J. Perrière, J. Hermann, V. Craciun, C.B. Leborgne, J. Appl. Phys. 80, 1803 (1996)

    Article  ADS  Google Scholar 

  15. N. Kresz, T. Smausz, B. Hopp, Appl. Surf. Sci. 253, 8160 (2007)

    Article  ADS  Google Scholar 

  16. C. Körner, R. Mayerhofer, M. Hartmann, H.W. Bergmann, Appl. Phys. A 63, 123 (1996)

    Article  ADS  Google Scholar 

  17. A. Miotello, R. Kelly, Appl. Phys. A 69, S67 (1999)

    ADS  Google Scholar 

  18. K.H. Song, X. Xu, Appl. Surf. Sci. 127–129, 111 (1998)

    Article  Google Scholar 

  19. V. Craciun, D. Craciun, M.C. Bunescu, C. B-Leborgne, J. Hermann, Phys. Rev. B 58, 6787 (1998)

    Article  ADS  Google Scholar 

  20. V. Craciun, N. Bassim, R.K. Singh, D. Craciun, J. Hermann, C. Boulmer-Leborgne, Appl. Surf. Sci. 186, 288 (2002)

    Article  ADS  Google Scholar 

  21. J.H. Yoo, S.H. Jeong, X.L. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 76, 783 (2000)

    Article  ADS  Google Scholar 

  22. J.M. Fishburn, M.J. Withford, D.W. Coutts, J.A. Piper, Appl. Surf. Sci. 252, 5182 (2006)

    Article  ADS  Google Scholar 

  23. H.L. Spindler, R.M. Gilgenbach, J.S. Lash, Appl. Phys. Lett. 68, 3245 (1996)

    Article  ADS  Google Scholar 

  24. J. Schou, Appl. Surf. Sci. 255, 5191 (2008)

    Article  ADS  Google Scholar 

  25. S.S. Yap, T.Y. Tou, Appl. Surf. Sci. 248, 340 (2005)

    Article  ADS  Google Scholar 

  26. L. Cultrera, M.I. Zeifman, A. Perrone, Appl. Surf. Sci. 253, 6322 (2007)

    Article  ADS  Google Scholar 

  27. Ž. Andreić, V. Henč-Bartolić, D. Cracin, M. Stubičar, Appl. Surf. Sci. 136, 73 (1998)

    Article  ADS  Google Scholar 

  28. S.S. Yap, T.Y. Tou, Appl. Surf. Sci. 253, 9521 (2007)

    Article  ADS  Google Scholar 

  29. A.D. Zwig, J. Appl. Phys. 70, 1684 (1991)

    Article  ADS  Google Scholar 

  30. L.K. Ang, Y.Y. Lau, R.M. Gilgenbach, H.L. Spindler, J.S. Lash, J. Appl. Phys. 83, 4466 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teck-Yong Tou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siew, WO., Lee, WK., Wong, HY. et al. Investigation of droplet formation in pulsed Nd:YAG laser deposition of metals and silicon. Appl. Phys. A 101, 627–632 (2010). https://doi.org/10.1007/s00339-010-5914-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5914-7

Keywords

Navigation