Skip to main content
Log in

Solid-state reaction synthesis of boron carbonitride nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, a simple route for synthesis of ternary boron carbonitride (B–C–N) nanotubes was demonstrated, by heating ball-milled mixture powders of amorphous boron and activated charcoal with a small amount of iron oxide (Fe2O3) at 1000–1200°C under a mixture gas flow of nitrogen (N2) and hydrogen (H2). The reduction of Fe2O3 by H2 at 650°C produced Fe nanoparticles, playing the role of a catalyst during the nanotube growth. The nanotubes synthesized at 1100°C exhibit two morphologies. One is a bamboo-like structure with thick compartments. The other is a quasi-cylindrical structure with thin or disappearing compartments. The average diameter of the nanotubes is about 80 nm. It is found that the reaction temperature has a great influence on the morphology, diameter and yield of the B–C–N nanotubes. Higher temperature (1200°C) is favorable for the formation of quasi-cylindrical nanotubes with larger diameters, while lower temperature (1000°C) enhances the formation of bamboo-like nanotubes with smaller diameters; the yield of nanotubes decreases with the rise of reaction temperature. The nanotubes grow via a combination mechanism of solid–liquid–solid (SLS) and vapor–liquid–solid (VLS) models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Dorozhkin, D. Golberg, Y. Bando, Z.C. Dong, Appl. Phys. Lett. 81, 1083 (2002)

    Article  ADS  Google Scholar 

  2. J. Choi, Y. Kim, K.J. Chang, D. Tománek, Phys. Rev. B 67, 125421 (2003)

    Article  ADS  Google Scholar 

  3. M. Terrones, N. Grobert, H. Terrones, Carbon 40, 1665 (2002)

    Article  Google Scholar 

  4. M. Kawaguchi, Adv. Mater. 9, 615 (1997)

    Article  MathSciNet  Google Scholar 

  5. X. Blase, J.C. Charlier, A.D. Vita, R. Car, Appl. Phys. Lett. 70, 197 (1997)

    Article  ADS  Google Scholar 

  6. Y. Miyamoto, A. Rubio, M.L. Cohen, S.G. Louie, Phys. Rev. B 50, 4976 (1994)

    Article  ADS  Google Scholar 

  7. X. Blase, J.C. Charlier, A.D. Vita, R. Car, Appl. Phys. Lett. 70, 197 (1997)

    Article  ADS  Google Scholar 

  8. D. Golberg, P.S. Dorozhkin, Y. Bando, Z.C. Dong, C.C. Tang, Y. Uemura, N. Grobert, M. Reyes-Reyes, H. Terrones, M. Terrones, Appl. Phys. A 76, 499 (2003)

    Article  ADS  Google Scholar 

  9. L. Liao, K.H. Liu, W.L. Wang, X.D. Bai, E.G. Wang, Y.L. Liu, J.C. Li, C. Liu, J. Am. Chem. Soc. 129, 9562 (2007)

    Article  Google Scholar 

  10. J. Rossato, R.J. Baierle, T.M. Schmidt, A. Fazzio, Phys. Rev. B 77, 035129 (2008)

    Article  ADS  Google Scholar 

  11. O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, P. Lefin, Science 266, 1683 (1994)

    Article  ADS  Google Scholar 

  12. K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime, Science 278, 653 (1997)

    Article  ADS  Google Scholar 

  13. Ph. Redlich, J. Loeffler, P.M. Ajayan, J. Bill, F. Aldinger, M. Rühle, Chem. Phys. Lett. 26, 465 (1996)

    Article  Google Scholar 

  14. L.W. Yin, Y. Bando, D. Golberg, A. Gloter, M.S. Li, X. Yuan, T. Sekiguchi, J. Am. Chem. Soc. 127, 16354 (2005)

    Article  Google Scholar 

  15. X.D. Bai, J.D. Guo, J. Yu, E.G. Wang, J. Yuan, W.Z. Zhou, Appl. Phys. Lett. 76, 2624 (2000)

    Article  ADS  Google Scholar 

  16. K. Raidongia, D. Jagadeesan, M. Upadhyay-Kahaly, U.V. Waghmare, S.K. Pati, M. Eswaramoorthy, C.N.R. Rao, J. Mater. Chem. 18, 83 (2008)

    Article  Google Scholar 

  17. R. Sen, B.C. Satishkumar, A. Govindaraj, K.R. Harikumar, R. Gargi, J.P. Zhang, A.K. Cheetham, C.N.R. Rao, Chem. Phys. Lett. 287, 671 (1998)

    Article  ADS  Google Scholar 

  18. M. Terrones, D. Golberg, N. Grobert, T. Seeger, M. Reyes-Reyes, M. Mayne, R. Kamalakaran, P. Dorozhkin, Z.C. Dong, H. Terrones, M. Ruhle, Y. Bando, Adv. Mater. 15, 1899 (2003)

    Article  Google Scholar 

  19. F.Q. Ji, C.B. Cao, S.H. Xue, D.Z. Wang, H.S. Zhu, J. Chem. Ind. Eng. 56, 363 (2005) (in Chinese)

    Google Scholar 

  20. L.J. Luo, L.B. Mo, Z.F. Tong, Y.J. Chen, Nanoscale Res. Lett. 4, 834 (2009)

    Article  ADS  Google Scholar 

  21. S.Y. Bae, H.W. Seo, J. Park, Y.S. Choi, J.C. Park, S.Y. Lee, Chem. Phys. Lett. 374, 534 (2003)

    Article  Google Scholar 

  22. N. Kio, T. Oku, M. Inoue, K. Suganuma, J. Mater. Sci. 43, 2955 (2008)

    Article  ADS  Google Scholar 

  23. N.S. Kim, Y.T. Lee, J. Park, H. Ryu, H.J. Lee, S.Y. Choi, J. Choo, J. Phys. Chem. B 106, 9286 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, L., Chen, Y. & Luo, L. Solid-state reaction synthesis of boron carbonitride nanotubes. Appl. Phys. A 100, 129–134 (2010). https://doi.org/10.1007/s00339-010-5746-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5746-5

Keywords

Navigation