Skip to main content
Log in

Growth of nanocrystalline TiO2 films by pulsed-laser-induced liquid-deposition method and preliminary applications for dye-sensitized solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel technique, the pulsed-laser-induced liquid-deposition (PLLD) method, has been employed to grow nanocrystalline TiO2 films on fluorine-doped tin-oxide-coated (FTO) glass substrates at room temperature. The PLLD method was implemented by directing a pulsed laser into a liquid precursor and depositing the photosynthesized nanocrystalline TiO2 on an FTO glass substrate immersed in the liquid precursor. The as-grown nanocrystalline TiO2 films were found to have a rutile crystal structure and consist of a number of flower-like TiO2 crystal units arrayed together on the FTO glass substrate. Each of the flower-like TiO2 crystal units was composed of many nanostructured TiO2 whiskers, and their building blocks were found to be bundles of TiO2 nanorods with diameter of about 5 nm. The growth of these TiO2 nanorods is highly anisotropic, with the preferential growth direction along [001]. As-grown nanocrystalline TiO2 films were annealed at 450°C in air for 30 min for the applications of dye-sensitized solar cells, and the nanostructured characteristics with good porosity were preserved after annealing. A preliminary dye-sensitized solar cell was built based on the annealed nanocrystalline TiO2 film. The results suggest that the PLLD method is a promising technique for growing nanocrystalline TiO2 films for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gratzel, Inorg. Chem. 44, 6841 (2005)

    Article  Google Scholar 

  2. B.O. Regan, M. Gratzel, Nature 353, 737 (1991)

    Article  ADS  Google Scholar 

  3. Z.S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa, Langmuir 21, 4272 (2005)

    Article  Google Scholar 

  4. S.R. Isaacs, H. Choo, W.B. Ko, Y.S. Shon, Chem. Mater. 18, 107 (2006)

    Article  Google Scholar 

  5. M.K. Nazeeruddin, P. Pechy, T. Renouard, M. Gratzel, J. Am. Chem. Soc. 123, 1613 (2001)

    Article  Google Scholar 

  6. M. Gratzel, Chem. Lett. 34, 8 (2005)

    Article  Google Scholar 

  7. S.P. Lianos, M. Gratzel, Chem. Mater. 15, 1825 (2003)

    Article  Google Scholar 

  8. D.S. Zhang, J.A. Downing, F.J. Knorr, J.L. McHale, J. Phys. Chem. B 110, 21890 (2006)

    Article  Google Scholar 

  9. C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, J. Am. Ceram. Soc. 80, 3157 (1997)

    Article  Google Scholar 

  10. O.K. Varghese, M. Paulose, C.A. Grimes, Nat. Nanotech. 4, 226 (2009)

    Article  Google Scholar 

  11. S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, S. Yanagida, J. Phys. Chem. B 106, 10004 (2002)

    Article  Google Scholar 

  12. K. Hara, T. Horiguchi, T. Kinoshit, K. Sayama, H. Arakawa, Sol. Energy Mater. Sol. Cells 70, 151 (2001)

    Article  Google Scholar 

  13. L.Y. Han, N. Koide, Y. Chiba, T. Mitate, Appl. Phys. Lett. 88, 223505 (2006)

    Article  ADS  Google Scholar 

  14. Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Chem. Rev. 248, 1381 (2004)

    Google Scholar 

  15. Y. Chiba, A. Islam, R. Komiya, N. Koide, L.Y. Han, Appl. Phys. Lett. 86, 213501 (2005)

    Article  ADS  Google Scholar 

  16. M. Gohmez, E. Magnusso, E. Olsson, A. Hagfeldt, S.E. Lindquist, C.G. Granqvist, Sol. Energy Mater. Sol. Cells 62, 259 (2000)

    Article  Google Scholar 

  17. G.K. Mor, O.K. Varghese, M. Paulose, C.A. Grimes, Adv. Funct. Mater. 15, 1291 (2005)

    Article  Google Scholar 

  18. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 6, 215 (2006)

    Article  ADS  Google Scholar 

  19. B. O’Regan, F. Lenzmann, R. Muis, J. Wienke, Chem. Mater. 14, 5023 (2002)

    Article  Google Scholar 

  20. H. Lindstrom, E. Magnusson, A. Holmberg, S. So’dergren, S.E. Lindquist, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 73, 91 (2002)

    Article  Google Scholar 

  21. K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, Nanotechnology 18, 365709 (2007)

    Article  Google Scholar 

  22. K. Onozuka, B. Ding, Y. Tsuge, T. Naka, M. Yamazaki, S. Sugi, S. Ohno, M. Yoshikawa, S. Shiratori, Nanotechnology 17, 1026 (2006)

    Article  ADS  Google Scholar 

  23. K. Mukherjee, T.H. Teng, R. Jose, S. Ramakrishna, Appl. Phys. Lett. 95, 012101 (2009)

    Article  ADS  Google Scholar 

  24. I.D. Kim, J.M. Hong, B.H. Lee, D.Y. Kim, Appl. Phys. Lett. 91, 163109 (2007)

    Article  ADS  Google Scholar 

  25. H. Kim, G.P. Kushto, C.B. Arnold, Z.H. Kafafi, A. Piqu, Appl. Phys. Lett. 85, 3 (2004)

    Google Scholar 

  26. E. Stathatos, P. Lianos, U. Lavrencic-Stangar, B. Orel, Adv. Mater. 14, 354 (2002)

    Article  Google Scholar 

  27. E. Stathatos, P. Lianos, Chem. Mater. 15, 1825 (2003)

    Article  Google Scholar 

  28. E. Stathatos, P. Lianos, Langmuir 13, 4295 (1999)

    Article  Google Scholar 

  29. H. Lindstrom, A. Holmberg, E. Magnusson, S.E. Lindquist, L. Malmqvist, A. Hagfeldt, Nano Lett. 1, 97 (2001)

    Article  ADS  Google Scholar 

  30. V. Švrček, T. Sasaki, R. Katoh, Y. Shimizu, N. Koshizaki, Appl. Phys. B, Lasers Opt. 94, 133 (2009)

    Article  ADS  Google Scholar 

  31. D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. Coss, G. Oskam, Nanotechnology 19, 145605 (2008)

    Article  ADS  Google Scholar 

  32. D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, Appl. Surf. Sci. 156, 200 (2000)

    Article  ADS  Google Scholar 

  33. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, 1978)

    Google Scholar 

  34. R. Katoh, M. Kasuya, A. Furube, N. Fuke, N. Koide, L.Y. Han, Sol. Energy Mater. Sol. Cells 93, 698 (2009)

    Article  Google Scholar 

  35. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R.H. Baker, P. Wang, S.M. Zakeeruddin, M. Gratzel, Chem. Commun. 23, 2635 (2008)

    Article  Google Scholar 

  36. K. Lee, S.W. Park, M.J. Ko, K. Kim, N.G. Park, Nat. Mater. 10, 1038 (2009)

    Google Scholar 

  37. T.S. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959)

    Google Scholar 

  38. P. Salvador, Sol. Energy Mater. 6, 241 (1982)

    Article  Google Scholar 

  39. L.J. Meng, M.P. Santos, Thin Solid Films 226, 22 (1993)

    Article  ADS  Google Scholar 

  40. L. Miao, P. Jin, K. Kaneko, K. Terai, N. Nabatova-Gabain, S. Tanemura, Appl. Surf. Sci. 212–213, 255 (2003)

    Article  Google Scholar 

  41. Y.H. Tseng, C.H. Kuo, C.H. Huang, Y. Li, P.O. Chou, C.L. Cheng, M.S. Wong, Nanotechnology 17, 2490 (2006)

    Article  ADS  Google Scholar 

  42. M. Gratzel, Nature 414, 338 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Ping Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, GB., Fu, MG., Lu, B. et al. Growth of nanocrystalline TiO2 films by pulsed-laser-induced liquid-deposition method and preliminary applications for dye-sensitized solar cells. Appl. Phys. A 100, 1169–1176 (2010). https://doi.org/10.1007/s00339-010-5731-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5731-z

Keywords

Navigation