Skip to main content
Log in

Instantaneous photoinitiated synthesis and rapid pulsed photothermal treatment of three-dimensional nanostructured TiO2 thin films through pulsed light irradiation

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report a novel approach to the instantaneous photoinitiated synthesis of mixed anatase-rutile nanocrystalline TiO2 thin films with a three-dimensional nanostructure through pulsed white light irradiation of photosensitive Ti-organic precursor films. Pulsed photoinitiated pyrolysis accompanied by instantaneous self-assembly and crystallization occurred to form graphitic oxides-coated TiO2 nanograins. Subsequent pulsed light irradiation working as in situ pulsed photothermal treatment improved the crystalline quality of TiO2 film despite its low attenuation of light. The non-radiative recombination of photogenerated electrons and holes in TiO2 nanograins, coupled with inefficient heat dissipation due to low thermal conductivity, produces enough heat to provide the thermodynamic driving force for improving the crystalline quality. The graphitic oxides were reduced by pulsed photothermal treatment and can be completely removed by oxygen plasma cleaning. This photoinitiated nanofabrication technology opens a promising way for the low-cost and high-throughput manufacturing of nanostructured metal oxides as well as TiO2 nanocrystalline thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A. Hagfeldt and M. Gratzel: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995).

    Article  CAS  Google Scholar 

  2. M. Gratzel: Photoelectrochemical cells. Nature 414, 338 (2001).

    Article  CAS  Google Scholar 

  3. Y. Bai, I. Mora-Sero, F.D. Angelis, J. Bisquert, and P. Wang: Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 114, 10095 (2014).

    Article  CAS  Google Scholar 

  4. A.L. Linsebigler, G. Lu, and J.T. Yates: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).

    Article  CAS  Google Scholar 

  5. T.L. Thompson and J.T. Yates: Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem. Rev. 106, 4428 (2006).

    Article  CAS  Google Scholar 

  6. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987 (2014).

    Article  CAS  Google Scholar 

  7. T. Nakjima, K. Shinoda, and T. Tsuchiya: UV-assisted nucleation and growth of oxide films from chemical solutions. Chem. Soc. Rev. 43, 2027 (2014).

    Article  Google Scholar 

  8. B.C. Riggs, R. Elupula, S.M. Grayson, and D.B. Chrisey: Photonic curing of aromatic thiol-ene click dielectric capacitors via inkjet printing. J. Mater. Chem. A 2, 17380 (2014).

    Article  CAS  Google Scholar 

  9. B.C. Riggs, R. Elupula, C. Rehm, S. Adireddy, S.M. Grayson, and D.B. Chrisey: Click-in ferroelectric nanoparticles for dielectric energy storage. ACS Appl. Mater. Interfaces 7, 17819 (2015).

    Article  CAS  Google Scholar 

  10. H.S. Kim, S.R. Dhage, D.E. Shim, and H.T. Hahn: Intense pulsed light sintering of copper nanoink for printed electronics. Appl. Phys. A 97, 791 (2009).

    Article  CAS  Google Scholar 

  11. J.S. Kang, J. Ryu, H.S. Kim, and H.T. Hahn: Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light. J. Electron. Mater. 40, 2268 (2011).

    Article  CAS  Google Scholar 

  12. P.M. Ajayan, M. Terrones, A. Guardia, V. Huc, N. Grobert, B.Q. Wei, H. Lezec, G. Ramanath, and T.W. Ebbesen: Nanotubes in a flash-ignition and reconstruction. Science 296, 705 (2002).

    Article  CAS  Google Scholar 

  13. J. Huang and R.B. Kaner: Flash welding of conducting polymer nanofibres. Nat. Mater. 3, 783 (2004).

    Article  CAS  Google Scholar 

  14. N. Wang, B.D. Yao, Y.F. Chan, and X.Y. Zhang: Enhanced photothermal effect in Si nanowires. Nano Lett. 3, 475 (2003).

    Article  CAS  Google Scholar 

  15. H. Chen and G. Diebold: Chemical generation of acoustic waves: A ‘giant’ photoacoustic effect. Science 270, 963 (1995).

    Article  CAS  Google Scholar 

  16. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito: Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751 (2010).

    Article  CAS  Google Scholar 

  17. L.J. Cote, R. Cruz-Silva, and J. Huang: Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131, 11027 (2009).

    Article  CAS  Google Scholar 

  18. S. Gijie, S. Dubin, A. Badakhshan, J. Farrar, S.A. Danczyk, and R.B. Kaner: Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Mater. 22, 419 (2010).

    Article  Google Scholar 

  19. S.H. Park and H.S. Kim: Environmentally benign and facile reduction of graphene oxide by flash light irradiation. Nanotechnology 26, 205601 (2015).

    Article  Google Scholar 

  20. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohhlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).

    Article  CAS  Google Scholar 

  21. G. Williams, B. Seger, and P.V. Kamat: TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487 (2008).

    Article  CAS  Google Scholar 

  22. N.J. Bell, Y.H. Ng, A. Du, H. Coster, S.C. Smith, and R. Amal: Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem. C 115, 6004 (2011).

    Article  CAS  Google Scholar 

  23. J.T. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H.J. Snaith, and R.J. Nicholas: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724 (2014).

    Article  CAS  Google Scholar 

  24. S.K. Hong, S.M. Song, O. Sul, and B.J. Cho: Carboxylic group as the origin of electrical performance degradation during the transfer process of CVD growth graphene. J. Electrochem. Soc. 159, K107 (2012).

    Article  CAS  Google Scholar 

  25. M. Koinuma, H. Tateishi, K. Hatakeyama, S. Miyamoto, C. Ogata, A. Funatsu, T. Taniguchi, and Y. Matsumoto: Analysis of reduced graphene oxides by X-ray photoelectron spectroscopy and electrochemical capacitance. Chem. Lett. 42, 924 (2013).

    Article  CAS  Google Scholar 

  26. C.N. Sayers and N.R. Armstrong: X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: Surface compositional changes of the TiO2 electrode during photoelectrolysis. Surf. Sci. 77, 301 (1978).

    Article  CAS  Google Scholar 

  27. G.E. Jellison, Jr., L.A. Boatner, J.D. Budai, B.S. Jeong, and D.P. Norton: Spectroscopic ellipsometry of thin film and bulk anatase (TiO2). J. Appl. Phys. 93, 9537 (2003).

    Article  CAS  Google Scholar 

  28. G. Krylova and C. Na: Photoinduced crystallization and activation of amorphous titanium dioxide. J. Phys. Chem. C 119, 12400 (2015).

    Article  CAS  Google Scholar 

  29. D.J. Kim, D.S. Kim, S. Cho, S.W. Kim, S.H. Lee, and J.C. Kim: Measurement of thermal conductivity of TiO2 thin films using 3ω method. Int. J. Thermophys. 25, 281 (2004).

    Article  CAS  Google Scholar 

  30. J. Fang, C. Reitz, T. Brezesinski, E.J. Nemanick, C.B. Kang, S.H. Tolbert, and L. Pilon: Thermal conductivity of highly-ordered mesoporous titania thin films from 30 to 320 K. J. Phys. Chem. C 115, 14606 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sijun Luo, Brian C. Riggs or Douglas B. Chrisey.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Zhang, S., Bourgeois, B.B. et al. Instantaneous photoinitiated synthesis and rapid pulsed photothermal treatment of three-dimensional nanostructured TiO2 thin films through pulsed light irradiation. Journal of Materials Research 32, 1701–1709 (2017). https://doi.org/10.1557/jmr.2017.139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.139

Navigation