Skip to main content
Log in

Realization of KaptonTM based optical interconnect by KMnO4 wet etching

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the paper, based on KMnO4 wet-etching technology PDMS (polydimethylsiloxane) based flexible optical interconnect packaged with KaptonTM (Dupont) foils was successfully realized through a stable and effective bonding technology. The optical and mechanical properties of the PDMS waveguide layer remained unchanged before and after packaging with KMnO4 etched Kapton foils. The mechanical stability limit of the tested optical interconnects is determined only by the intrinsic mechanical stability of the used PDMS materials. The optical loss at 850 nm is <0.05 dB/cm even after temperature treatments up to lead-free soldering temperatures of 260°C. In addition, the main mechanism of forming a good bonding between PDMS and Kapton foil was identified and analyzed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Berger, M.A. Kossel, C. Menolfi, T. Morf, T. Toifl, M.L. Scmatz, High-density optical interconnects within large-scale systems, in Proc. SPIE ‘VCSELs and Optical Interconnects’, Brugge, Belgium, 2002, pp. 222–235

  2. D.K. Cai, A. Neyer, Realization of Electrical-Optical-Circuit-Board self-packaging, in Proceedings on 57th Electronic Components and Technology Conference, ECTC 2007, Reno, Nevada, USA, 2007, pp. 1368–1374

  3. G.L. Bona, B.J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann, F. Horst, Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board, in Proc. SPIE ‘Micro-Optics, VCSELs and Photonic Interconnects’, vol. 5453, 2004, pp. 134–141

  4. L.C. Shen, W.C. Lo, H.H. Chang, H.C. Fu et al., Flexible electronic-optical local bus modules to the board-to-board, board-to-chip, and chip-to-chip optical interconnection, in Proc. 55th Electronic Components an Technology Conf., Orlando, FL, USA, June 2005, pp. 1039–1043

  5. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, R.T. Chen, Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level. J. Lightwave Technol. 22, 2168–2175 (2004)

    Article  ADS  Google Scholar 

  6. S. Kopetz, D.K. Cai, E. Rabe, A. Neyer, PDMS-based optical waveguide layer for integration in electrical-optical circuit boards. ÄEU-Int. J. Electron. Commun. 61, 163–167 (2007)

    Article  Google Scholar 

  7. D.K. Cai, A. Neyer, R. Kuckuk, M. Heise, Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication. Opt. Mater. 30, 1157–1161 (2008)

    Article  ADS  Google Scholar 

  8. S. Guimond, M.R. Wertheimer, Surface degradation and hydrophobic recovery of polyolefins treated by air corona and nitrogen atmospheric pressure glow discharge. J. Appl. Polym. Sci. 94, 1291–1303 (2004)

    Article  Google Scholar 

  9. L. Szetsen, T. Yu-Chung, H. Chin-Fa, Spectroscopic investigations of plasma damage of kapton. J. Vac. Sci. Technol. B 18(2), 805–810 (2004)

    Google Scholar 

  10. S. Siau, A. Vervaet, A. Calster, Influence of wet chemical treatments on the evolution of epoxy polymer layer surface roughness for use as a build-up layer. Appl. Surf. Sci. 237(1–4), 457–462 (2004)

    Article  ADS  Google Scholar 

  11. H. Asai, N. Iwase et al., Influence of ceramic surface treatment on peel-off strength between aluminum nitride and epoxy-modified polyaminobismaleimide adhesive. IEEE Trans. Adv. Packaging 24(1), 104–112 (2001)

    Article  Google Scholar 

  12. S. Park, H. Lee, Effect of atmospheric-pressure plasma on adhesion characteristics of polyimide film. J. Colloid Interface Sci. 285, 267–272 (2005)

    Article  Google Scholar 

  13. D. Owens, R. Wendt, Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747 (1963)

    Article  Google Scholar 

  14. D.K. Cai, A. Neyer, R. Kuckuk, M. Heise, Estimation of absorption loss in siloxane-based materials implemented as passive optical interconnects, in Proceedings on Optical Fiber Communication, OFC 2007, Anaheim, California, USA (2007), Techn. Digest, paper JWA 27

  15. D.K. Cai, A. Neyer, Polysiloxane based flexible Electrical-Optical-Circuits-Board. Microelectron. Eng. (in press). doi:10.1016/j.mee.2010.02.014

  16. D.K. Cai, A. Neyer, Cost-effective and reliable sealing method for PDMS (PolyDiMethylSiloxane) based microfluidic devices with various substrates. Microfluid. Nanofluid. (in press). doi:10.1007/s10404-010-0596-1

  17. D.K. Cai, A. Neyer, Cost-effective waveguide integration method for large-scale electrical-optical-circuit-board production. Electron. Lett. 46(8), 581–583 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Neyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, D.K., Neyer, A. Realization of KaptonTM based optical interconnect by KMnO4 wet etching. Appl. Phys. A 99, 783–789 (2010). https://doi.org/10.1007/s00339-010-5723-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5723-z

Keywords

Navigation