Skip to main content
Log in

Soft limiting circuit implementable with a single multi-walled carbon nanotube

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Dispersed growth techniques are applied to grow carbon nanotubes between metal pads on silicon wafers. Process conditions are tuned to yield nanotube devices having only one multi-walled carbon nanotube connecting the metal pads. The nonlinear transfer characteristics of these devices are often accompanied with high impedance and low conduction current. These attributes can be utilized for a soft limiting circuit with impedance much higher than conventional silicon-based implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–51 (1998)

    Article  ADS  Google Scholar 

  2. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai, High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92(10), 106804 (2004)

    Article  ADS  Google Scholar 

  3. J. Appenzeller, Carbon nanotubes for high-performance electronics—progress and prospect. Proc. IEEE 96(2), 201–211 (2008)

    Article  Google Scholar 

  4. R. Sordan, K. Balasubramanian, M. Burghard, K. Kern, Exclusive-OR gate with a single carbon nanotube. Appl. Phys. Lett. 88(5), 053119 (2006)

    Article  ADS  Google Scholar 

  5. S. Rosenblatt, H. Lin, V. Sazonova, S. Tiwari, P.L. McEuen, Mixing at 50 GHz using a single-walled carbon nanotube transistor. Appl. Phys. Lett. 87(15), 153111 (2005)

    Article  ADS  Google Scholar 

  6. J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998)

    Article  ADS  Google Scholar 

  7. Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 (2001)

    Article  ADS  Google Scholar 

  8. S. Lastella, G. Mallick, R. Woo, S.P. Karna, D.A. Rider, I. Manners, Y.J. Jung, C.Y. Ryu, P.M. Ajayan, Parallel arrays of individually addressable single-walled carbon nanotube field-effect transistors. J. Appl. Phys. 99(2), 024302 (2006)

    Article  ADS  Google Scholar 

  9. A. Fonseca, K. Hernadi, P. Piedigrosso, J.-F. Colomer, K. Mukhopadhyay, R. Doome, S. Lazarescu, L.P. Biro, P. Lambin, P.A. Thiry, D. Bernaerts, J.B. Nagy, Synthesis of single- and multi-wall carbon nanotubes over supported catalysts. Appl. Phys. A 67, 11–22 (1998)

    Article  ADS  Google Scholar 

  10. A.S. Sedra, K.C. Smith, Microelectronic Circuits, 4th edn. (Oxford University Press, New York, 1998)

    Google Scholar 

  11. M.A. Ahmad, D. Dragoman, M. Dragoman, R. Plana, J.H. Ting, F.Y. Huang, T.L. Li, Multiple negative differential resistance in crossed carbon nanotubes. J. Appl. Phys. 105(11), 114303 (2009)

    Article  ADS  Google Scholar 

  12. T.L. Li, J.H. Ting, B.Z. Yang, Conducting properties of suspended carbon nanotubes grown by thermal chemical vapor deposition. J. Vac. Sci. Technol. B 25(4), 1221–1226 (2007)

    Article  Google Scholar 

  13. D. Wang, Z. Yu, S. McKernan, P.J. Burke, Ultrahigh frequency carbon nanotube transistor based on a single nanotube. IEEE Trans. Nanotechnol. 6(4), 400–403 (2007)

    Article  ADS  Google Scholar 

  14. M. Hu, Y. Murakami, M. Ogura, S. Maruyama, T. Okubo, Morphology and chemical state of Co-Mo catalysts for growth of single-walled carbon nanotubes vertically aligned on quartz substrates. J. Catal. 225, 230–239 (2004)

    Article  Google Scholar 

  15. Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chem. Phys. Lett. 377, 49–54 (2003)

    Article  ADS  Google Scholar 

  16. Y. Murakami, S. Chiashi, Y. Miyauchi, S. Maruyama, Direct synthesis of single-walled carbon nanotubes on silicon and quartz-based systems. Jpn. J. Appl. Phys. 43(3), 1221–1226 (2004)

    Article  ADS  Google Scholar 

  17. J.H. Ting, J.Y. Lyu, F.Y. Huang, T.L. Li, C.L. Hsu, C.W. Liu, Synthesis of single-wall carbon nanotubes by atmospheric thermal CVD. In 17th Biennial University/Government/Industry Micro/Nano Symp., 2008, pp. 157–160

  18. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Book  Google Scholar 

  19. J.H. Ting, T.L. Li, Y.C. Hong, Dependence of field emission properties of carbon nanotube films on their graphitization. J. Vac. Sci. Technol. B 24(4), 1794–1798 (2006)

    Article  Google Scholar 

  20. B. Bourlon, C. Miko, L. Forro, D.C. Glattli, A. Bachtold, Beyond the linearity of current–voltage characteristics in multiwalled carbon nanotubes. Semicond. Sci. Technol. 21, S33–S37 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Lung Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, MH., Ting, JH., Yang, BZ. et al. Soft limiting circuit implementable with a single multi-walled carbon nanotube. Appl. Phys. A 100, 193–196 (2010). https://doi.org/10.1007/s00339-010-5695-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5695-z

Keywords

Navigation