Skip to main content
Log in

A complementary set of electrochemical and X-ray synchrotron techniques to determine the passivation mechanism of iron treated in a new corrosion inhibitor solution specifically developed for the preservation of metallic artefacts

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metallic artefacts of the cultural heritage are often stored in uncontrolled environmental conditions. They are very sensitive to atmospheric corrosion caused by a succession of wet and dry periods due to variations of relative humidity and temperature. To avoid the complete degradation of the metallic artefacts, new preventive strategies must be developed. In this context, we have studied new compounds based on sodium carboxylates solutions CH3(CH2)n−2COO, Na+ hereafter called NaC n . They allow the formation of a passive layer at the metallic surface composed of a metal–carboxylate complex. To understand the action of those inhibitors in the passivation process of iron we have performed electrochemical measurements and surface characterisation. Moreover, to monitor in real time the growth of the coating, in situ X-ray absorption spectroscopy (XAS) experiments at iron K-edge were carried out in an electrochemical cell. These analyses have shown that in the case of NaC10 solution, the protection of iron surface is correlated to the precipitation of a well-organised layer of FeC10. These experiments confirmed that this compound is a fully oxidised trinuclear Fe(III) complex containing decanoate anions as ligands. Such information concerning the passive layer is a key factor to evaluate its stability and finally the long-term efficiency of the protection treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Mourey, E. Czerwinski, in ICOM-CC 10 th Triennial Meeting, Washington, D.C. (1993), pp. 779–785

  2. V. Otieno-Alego, G. Neath, D. Hallam, D. Creagh, in Metal98 (James and James, London, 1998), pp. 309–314

    Google Scholar 

  3. L.E. Merck, Stud. Conserv. 26, 73–76 (1981)

    Article  Google Scholar 

  4. C. Rapin, P. Steinmetz, J. Steinmetz, in Corrosion’98 (1998), p. 211

  5. E. Rocca, J. Steinmetz, Corros. Sci. 43, 891 (2001)

    Article  Google Scholar 

  6. E. Rocca, C. Rapin, F. Mirambet, Corros. Sci. 46, 653–665 (2004)

    Article  Google Scholar 

  7. E. Rocca, C. Caillet, A. Mesbah, M. Francois, J. Steinmetz, Chem. Mater. 18(26), 6186–6193 (2006)

    Article  Google Scholar 

  8. F. Mirambet, E. Rocca, J. Steinmetz, in EUROCORR 2004 Proceedings (2004)

  9. S. Hollner, F. Mirambet, E. Rocca, J. Steinmetz, in Metal07 Proceedings (2007)

  10. J. Monnier, L. Legrand, L. Bellot-Gurlet, E. Foy, S. Reguer, E. Rocca, P. Dillmann, D. Neff, F. Mirambet, S. Perrin, I. Guillot, J. Nucl. Mater. 379, 105–111 (2008)

    Article  ADS  Google Scholar 

  11. O. Proux, X. Biquard, E. Lahera, J.-J. Menthonnex, A. Prat, O. Ulrich, Y. Soldo, P. Trevisson, G. Kapoujyan, G. Perroux, P. Taunier, D. Grand, P. Jeantet, M. Deleglise, J.-P. Roux, J.-L. Hazemann, Phys. Scr. T 115, 970–973 (2005)

    Article  Google Scholar 

  12. B. Ravel, M. Newville, J. Synchrotron Radiat. 12, 537–541 (2005)

    Article  Google Scholar 

  13. M. François, M.I. Saleh, P. Rabu, M. Souhassou, B. Malaman, J. Steinmetz, Solid State Sci. 7, 1236–1246 (2005)

    Article  ADS  Google Scholar 

  14. T. Nakamoto, M. Katada, H. Sano, Inorg. Chim. Acta 291, 127–135 (1999)

    Article  Google Scholar 

  15. M. Wilke, F. Farges, P.-E. Petit, G. Brown, F. Martin, Am. Mineral. 86, 714–730 (2001)

    Google Scholar 

  16. F. Farges, Y. Lefrère, S. Rossano, A. Berthereau, G. Calas, G.E.B. Brown Jr., J. Non-Cryst. Solids 344, 177–188 (2004)

    Article  ADS  Google Scholar 

  17. S. Reguer, P. Dillmann, F. Mirambet, J. Susini, P. Lagarde, Appl. Phys. A 83, 189–193 (2006)

    Article  ADS  Google Scholar 

  18. F. Lacouture, M. Francois, C. Didierjean, J.P. Rivera, E. Rocca, J. Steinmetz, Acta Cristallogr. C 57, 530–531 (2001)

    Article  Google Scholar 

  19. T. Nakamoto, M. Katada, K. Endo, H. Sano, Polyhedron 17(20), 3507–3514 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Reguer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirambet, F., Reguer, S., Rocca, E. et al. A complementary set of electrochemical and X-ray synchrotron techniques to determine the passivation mechanism of iron treated in a new corrosion inhibitor solution specifically developed for the preservation of metallic artefacts. Appl. Phys. A 99, 341–349 (2010). https://doi.org/10.1007/s00339-010-5674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5674-4

Keywords

Navigation