Skip to main content
Log in

Corrosion mechanism of Zn–Al–Mg-coated steel in simulated polluted marine atmosphere

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The corrosion behaviour of zinc–aluminium–magnesium-coated steel in a simulated polluted marine atmospheric environment was investigated. Therefore, an indoor ageing acceleration test was carefully designed by simulating a polluted marine environment. The objective was to in-depth investigate the corrosion mechanism of Zn–Al–Mg-coated steel exposed to a simulated polluted marine environment. The experiments were carried out by scanning electron microscopy for micro-morphological characterization, X-ray diffraction, electrochemical impedance spectroscopy and electrodynamic polarization curves for the aged samples. The analysis of the results obtained after an indoor accelerated ageing test shows that Zn–Al–Mg coatings generate insoluble Zn5Cl2(OH)8·H2O and Zn4SO4(OH)6 during the corrosion process, which hinders the diffusion of corrosive substances into the substrate, and the insoluble substances are structurally dense and thus inhibit further corrosion. Therefore, this effectively inhibits the occurrence of further corrosion, and thus, Zn–Al–Mg coating can significantly extend the service life of Zn–Al–Mg-coated steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Liu, A. Ooi, E. Tada, A. Nishikata, Corros. Sci. 147 (2019) 273–282.

    Article  Google Scholar 

  2. B.W. Çetinkaya, F. Junge, G. Müller, F. Haakmann, K. Schierbaum, M. Giza, J. Mater. Res. Technol. 9 (2020) 16445–16458.

    Article  Google Scholar 

  3. T. Bick, K. Treutler, V. Wesling, Weld. World 65 (2021) 353–360.

    Article  Google Scholar 

  4. R.S. Chu, Z. Wang, X.X. Deng, N.J. Sun, C.L. Xu, Z.C. Guo, J. Iron Steel Res. Int. 30 (2023) 1324–1333.

    Article  Google Scholar 

  5. L. Gao, Z. Li, X. Kuang, F. Yin, H. Ji, Surf. Coat. Technol. 304 (2016) 306–315.

    Article  Google Scholar 

  6. K.A. Yasakau, S. Kallip, A. Lisenkov, M.G.S. Ferreira, M.L. Zheludkevich, Electrochim. Acta 211 (2016) 126–141.

    Article  Google Scholar 

  7. Y. Xie, A. Du, X. Zhao, R. Ma, Y. Fan, X. Cao, Surf. Coat. Technol. 337 (2018) 313–320.

    Article  Google Scholar 

  8. M. Salgueiro Azevedo, C. Allély, K. Ogle, P. Volovitch, Corros. Sci. 90 (2015) 482–490.

    Article  Google Scholar 

  9. E. Diler, B. Rouvellou, S. Rioual, B. Lescop, G. Nguyen Vien, D. Thierry, Corros. Sci. 87 (2014) 111–117.

    Article  Google Scholar 

  10. D. Thierry, D. Persson, G. Luckeneder, K.H. Stellnberger, Corros. Sci. 148 (2019) 338–354.

    Article  Google Scholar 

  11. A. Dong, B. Li, Y. Lu, G. Zhu, H. Xing, D. Shu, B. Sun, J. Wang, Materials 10 (2017) 980.

    Article  Google Scholar 

  12. N. LeBozec, D. Thierry, M. Rohwerder, D. Persson, G. Luckeneder, L. Luxem, Corros. Sci. 74 (2013) 379–386.

    Article  Google Scholar 

  13. T. Gu, Y. Liu, C. Peng, P. Zhang, Z. Wang, Mater. Chem. Phys. 291 (2022) 126686.

    Article  Google Scholar 

  14. D. Persson, D. Thierry, O. Karlsson, Corros. Sci. 126 (2017) 152–165.

    Article  Google Scholar 

  15. C.N. Panagopoulos, P. Koutsonikolis, V.D. Papachristos, A. Michaelidis, J. Mater. Process. Technol. 94 (1999) 112–115.

    Article  Google Scholar 

  16. J.N. Kim, C.S. Lee, Y.S. Jin, Met. Mater. Int. 24 (2018) 1090–1098.

    Article  Google Scholar 

  17. T. Prosek, D. Persson, J. Stoulil, D. Thierry, Corros. Sci. 86 (2014) 231–238.

    Article  Google Scholar 

  18. N. Wint, N. Cooze, J.R. Searle, J.H. Sullivan, G. Williams, H.N. McMurray, G. Luckeneder, C. Riener, J. Electrochem. Soc. 166 (2019) C3147–C3158.

    Article  Google Scholar 

  19. J.D. Fu, S. Wan, Y. Yang, Q. Su, W.W. Han, Y.B. Zhu, Constr. Build. Mater. 306 (2021) 124864.

    Article  Google Scholar 

  20. S.R. Arunachalam, S.E. Galyon Dorman, R.T. Buckley, N.A. Conrad, S.A. Fawaz, Int. J. Fatigue 111 (2018) 44–53.

    Article  Google Scholar 

  21. J. Sullivan, S. Mehraban, J. Elvins, Corros. Sci. 53 (2011) 2208–2215.

    Article  Google Scholar 

  22. Z.L. Li, K. Xiao, C.F. Dong, X.Q. Cheng, W. Xue, W. Yu, J. Iron Steel Res. Int. 26 (2019) 1315–1328.

    Article  Google Scholar 

  23. P. Montoya, I. Díaz, N. Granizo, D. de la Fuente, M. Morcillo, Mater. Chem. Phys. 142 (2013) 220–228.

    Article  Google Scholar 

  24. C. Guo, H. Wang, Y.Q. Guo, Y.F. Chen, Y.J. Ke, H.T. Zhang, X.G. Liu, H. Nagaumi, Corros. Sci. 229 (2024) 111878.

    Article  Google Scholar 

  25. K. Xiao, C.F. Dong, X.G. Li, F.M. Wang, J. Iron Steel Res. Int. 15 (2008) No. 5, 42–48.

    Article  Google Scholar 

  26. Y. Kojima, T. Shimoda, S. Suzuki, J. Wood Sci. 58 (2012) 525–531.

    Article  Google Scholar 

  27. F. Mansfeld, Corros. Sci. 47 (2005) 3178–3186.

    Article  Google Scholar 

  28. Y. Ma, Y. Li, F. Wang, Corros. Sci. 52 (2010) 1796–1800.

    Article  Google Scholar 

  29. S. Thomas, N. Birbilis, M.S. Venkatraman, I.S. Cole, CORROSION 68 (2012) 015009.

    Article  Google Scholar 

  30. D. Thierry, N. LeBozec, A. Le Gac, D. Persson, Mater. Corros. 70 (2019) 2220–2227.

    Article  Google Scholar 

  31. R.J. Wu, J. Xia, X. Cheng, K.H. Liu, K.Y. Chen, Q.F. Liu, W.L. Jin, Constr. Build. Mater. 322 (2022) 126378.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFB0304602), the National Natural Science Foundation of China (Nos. 51771029) and the National Environmental Corrosion Platform (NECP, 2005DKA10400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Xiao.

Ethics declarations

Conflict of interest

There is no conflict of interest in the submission of this manuscript, and the manuscript is approved by all authors for publication. I would like to declare on behalf of my coauthors that the work described is original research that has not been published previously and is not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the enclosed manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Pd., Xiao, Ly., Wang, J. et al. Corrosion mechanism of Zn–Al–Mg-coated steel in simulated polluted marine atmosphere. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01210-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01210-9

Keywords

Navigation