Skip to main content
Log in

Effect of thickness on magnetic phase coexistence and electrical transport in Nd0.51Sr0.49MnO3 films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present the impact of the film thickness on the coexistence of various magnetic phases and its link to the magnetoresistance of Nd0.51Sr0.49MnO3 thin films. These epitaxial films are deposited on LaAlO3 (001) substrates by DC magnetron sputtering. Films with thicknesses of approximately 30 nm are found to be under full compressive strain while those with thicknesses ∼100 nm and beyond exhibit the presence of both strained and relaxed phases, as evidenced from X-ray diffraction studies. Both films exhibit multiple magnetic transitions controlled by strong electron correlations and phase coexistence. These films also display insulator–metal transitions (IMT) and colossal magnetoresistance (CMR) under moderate magnetic fields. Among the two set of films, only the 30-nm films show a weak signature of charge ordering at T≈50 K. Even at temperatures much lower than the IMT, the 30-nm films show huge magnetoresistance (MR) ∼80%. This suggests presence of softened charge-ordered insulating (COI) clusters that are transformed into ferromagnetic metallic (FMM) ones by the external magnetic field. In the 100-nm films, the corresponding MR is suppressed to less than 20%. Our study demonstrates that the softening of the COI phase is induced by the combined effect of the in-plane compressive strain and a slight reduction in Sr concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, Y. Tokura, Science 270, 961 (1995)

    Article  ADS  Google Scholar 

  2. Y. Tokura, Rep. Prog. Phys. 69, 797 (2006)

    Article  ADS  Google Scholar 

  3. Y. Moritomo, T. Akimoto, A. Nakamura, K. Ohoyama, M. Ohashi, Phys. Rev. B 58, 5544 (1998)

    Article  ADS  Google Scholar 

  4. H. Kawano, R. Kajimoto, H. Yoshizawa, Y. Tomioka, H. Kuwahara, Y. Tokura, Phys. Rev. Lett. 78, 4253 (1997)

    Article  ADS  Google Scholar 

  5. R. Kajimoto, H. Yoshizawa, H. Kawano, H. Kuwahara, Y. Tokura, K. Ohoyama, M. Ohashi, Phys. Rev. B 60, 9506 (1999)

    Article  ADS  Google Scholar 

  6. C. Ritter, R. Mahendiran, M. Ibarra, L. Morellon, A. Maignan, B. Raveau, C.N.R. Rao, Phys. Rev. B 61, R9229 (2000)

    Article  ADS  Google Scholar 

  7. M. Nakamura, Y. Ogimoto, H. Tamaru, M. Izumi, K. Miyano, Appl. Phys. Lett. 86, 182504 (2005)

    Article  ADS  Google Scholar 

  8. W. Prellier, A. Biswas, M. Rajeswari, T. Venkatesan, R.L. Greene, Appl. Phys. Lett. 75, 397 (1999)

    Article  ADS  Google Scholar 

  9. V. Ponnambalam, S. Parashar, A.R. Raju, C.N.R. Rao, Appl. Phys. Lett. 74, 206 (1999)

    Article  ADS  Google Scholar 

  10. Y. Ogimoto, M. Nakamura, N. Takubo, H. Tamaru, M. Izumi, K. Miyano, Phys. Rev. B 71, 060403(R) (2005)

    Article  ADS  Google Scholar 

  11. Y.H. Hyun, S.Y. Park, Y.P. Lee, V.G. Prokhorov, V.L. Svetchnikov, Appl. Phys. Lett. 91, 262505 (2007)

    Article  ADS  Google Scholar 

  12. W. Prellier, Ph. Lecoeur, B. Mercey, J. Phys. Condens. Matter 13, R915 (2001)

    Article  ADS  Google Scholar 

  13. A.M. Haghiri-Gosnet, J.P. Renard, J. Phys. D: Appl. Phys. 36, R127 (2003)

    Article  ADS  Google Scholar 

  14. H.K. Singh, P. Kumar, R. Prasad, M.P. Singh, V. Agarwal, P.K. Siwach, P. Fournier, J. Phys. D: Appl. Phys. 42, 105009 (2009)

    Article  ADS  Google Scholar 

  15. J. Geck, D. Bruns, C. Hess, R. Klingeler, P. Reutler, M.V. Zimmermann, S.-W. Cheong, B. Büchner, Phys. Rev. B 66, 184407 (2002)

    Article  ADS  Google Scholar 

  16. T. Fujiwara, M. Korotin, Phys. Rev. B 59, 9903 (1999)

    Article  ADS  Google Scholar 

  17. A. Biswas, I. Das, J. Appl. Phys. 102, 064303 (2007)

    Article  ADS  Google Scholar 

  18. R. Prasad, H.K. Singh, M.P. Singh, W. Prellier, P.K. Siwach, A. Kaur, J. Appl. Phys. 103, 083906 (2008)

    Article  ADS  Google Scholar 

  19. J.Z. Sun, D.W. Abraham, R.A. Rao, C.B. Eom, Appl. Phys. Lett. 74, 3017 (1999)

    Article  ADS  Google Scholar 

  20. Z.Q. Zhang, R.W. Hendrikx, P.J.M. van Bentum, J. Aarts, Europhys. Lett. 58, 864 (2002)

    Article  ADS  Google Scholar 

  21. M. Zeise, C. Srinitiwarawong, Phys. Rev. B 58, 11519 (1998)

    Article  ADS  Google Scholar 

  22. D. Emin, T. Holstein, Ann. Phys. 53, 439 (1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, R., Singh, M.P., Siwach, P.K. et al. Effect of thickness on magnetic phase coexistence and electrical transport in Nd0.51Sr0.49MnO3 films. Appl. Phys. A 99, 823–829 (2010). https://doi.org/10.1007/s00339-010-5595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5595-2

Keywords

Navigation