Skip to main content
Log in

Laser induced breakdown spectroscopy of germane plasma induced by IR CO2 pulsed laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser-induced breakdown spectroscopy (LIBS) in germane (GeH4), initially at room temperature and pressures ranging from 2 to 10 kPa, was studied using a high-power transverse excitation atmospheric (TEA) CO2 laser (λ=10.653 μm, τ FWHM=64 ns and power densities ranging from 0.28 to 5.52 GW cm−2). The strong emission spectrum of the generated plasma is mainly due to electronic relaxation of excited Ge, H and ionic fragments Ge+, Ge2+ and Ge3+. The weak emission is due to molecular bands of H2. Excitation temperatures of 8100±300 K and 23,500±2500 K were estimated by Ge atomic and Ge+ singly ionized lines, respectively. Electron number densities of the order of (0.7–6.2)×1017 cm−3 were deduced from the Stark broadening of several atomic Ge lines. The characteristics of the spectral emission intensities from different species have been investigated as functions of the germane pressure and laser irradiance. Optical breakdown threshold intensities in germane at 10.653 μm have been determined. The mechanism of initiation of the laser-induced plasma in germane has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Walters, G.I. Bourianoff, H.A. Atwater, Nat. Mater. 4, 143 (2005)

    Article  ADS  Google Scholar 

  2. G. Conibeer, M. Green, R. Corkish, Y. Cho, E.C. Cho, C.W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, K.L. Lin, Thin Solid Films 511–512, 654 (2006)

    Article  Google Scholar 

  3. K. Choi, W.K. Chim, C.L. Heng, L.W. Teo, V. Ho, V. Ng, D.A. Antoniadis, E.A. Fitzgerald, Appl. Phys. Lett. 80, 2014 (2002)

    Article  ADS  Google Scholar 

  4. F. Vega, C.N. Afonso, J. Solis, J. Appl. Phys. 73, 2472 (1993)

    Article  ADS  Google Scholar 

  5. P.J. Wolf, J. Appl. Phys. 76, 1480 (1994)

    Article  ADS  Google Scholar 

  6. M.P. Chuchman, A.K. Shuaibov, Plasma Phys. Rep. 34, 306 (2008)

    Article  ADS  Google Scholar 

  7. G. Bekefi (ed.), Principles of Laser Plasma (John Wiley, New York, 1976)

    Google Scholar 

  8. L.J. Radzienxki, D.A. Cremers (eds.), Laser Induced Plasma and Applications (Marcel Dekker, New York, 1989)

    Google Scholar 

  9. Y.-I. Lee, K. Song, J. Sneddon, Laser Induced Breakdown Spectrometry (Nova Science, New York, 2000)

    Google Scholar 

  10. D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (John Wiley, Chichester, 2006)

    Book  Google Scholar 

  11. A.W. Miziolek, V. Palleschi, I. Schechter (eds.), Laser-Induced Breakdown Spectroscopy (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  12. J.P. Singh, S.N. Thakur (eds.), Laser-Induced Breakdown Spectroscopy (Elsevier, Oxford, 2007)

    Google Scholar 

  13. J.J. Camacho, J.M.L. Poyato, L. Díaz, M. Santos, J. Phys. B: At. Mol. Opt. Phys. 40, 4573 (2007)

    Article  ADS  Google Scholar 

  14. L. Diaz, M. Santos, J.A. Torresano, M. Castillejo, M. Jadraque, M. Martin, M. Oujja, E. Rebollar, Appl. Phys. A 85, 33 (2006)

    Article  ADS  Google Scholar 

  15. J.J. Camacho, M. Santos, L. Díaz, J.M.L. Poyato, J. Phys. D: Appl. Phys. 41, 215206 (2008)

    Article  ADS  Google Scholar 

  16. J.J. Camacho, M. Santos, L. Díaz, L.J. Juan, J.M.L. Poyato, published online: Appl. Phys. A. DOI:10.1007/s00339-009-5466-x

  17. W.T. Jolly, D.E. Drake, Inorg. Synth. 7, 34 (1963)

    Article  Google Scholar 

  18. NIST atomic spectra database (2008), online at http://physics.nist.gov/PhysRefData/ASD/index.html

  19. W.C. Martin, R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983)

    Article  ADS  Google Scholar 

  20. H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York, 1974)

    Google Scholar 

  21. M.S. Dimitrijevic, P. Jovanovic, Z. Simic, Astron. Astrophys. 410, 735 (2003)

    Article  ADS  Google Scholar 

  22. R.W.P. McWhirter, in Plasma Diagnostic Techniques, ed. by R.H. Huddlestone, S.L. Leonard (eds.) (Academic Press, New York, 1965), Chap. 5

    Google Scholar 

  23. C.H. Chan, C.D. Moody, W.B. McKnight, J. Appl. Phys. 44, 1179 (1973)

    Article  ADS  Google Scholar 

  24. Y.E.E.-D. Gamal, N.M. Abdel-Monelm, J. Phys. D: Appl. Phys. 20, 757 (1987)

    Article  ADS  Google Scholar 

  25. N. Kroll, K.M. Watson, Phys. Rev. A 5, 1883 (1983)

    Article  ADS  Google Scholar 

  26. D.C. Smith, Appl. Phys. Lett. 19, 405 (1971)

    Article  ADS  Google Scholar 

  27. D.I. Rosen, G. Weyl, J. Phys. D: Appl. Phys. 20, 1264 (1987)

    Article  ADS  Google Scholar 

  28. J. Striker, J.G. Parker, J. Appl. Phys. 53, 851 (1982)

    Article  ADS  Google Scholar 

  29. Y.P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991)

    Google Scholar 

  30. T. Gasmi, H.A. Zeaiter, G. Ropero, A. Gonzalez-Ureña, Appl. Phys. B 71, 169 (2000)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Camacho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, M., Díaz, L., Camacho, J.J. et al. Laser induced breakdown spectroscopy of germane plasma induced by IR CO2 pulsed laser. Appl. Phys. A 99, 811–821 (2010). https://doi.org/10.1007/s00339-010-5592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5592-5

Keywords

Navigation