Skip to main content
Log in

Experimental study of electrical properties of ZnO nanowire random networks for gas sensing and electronic devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we report on studying of ZnO nanowire mats as an electrical nanomaterial with particular interest in their interaction with various gas surroundings for gas sensing characteristics. The ZnO nanowires were synthesized on sapphire substrates using a horizontal tube furnace. The techniques of Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X-Ray Diffraction (XRD), and X-Ray Photoelectron Spectroscopy (XPS) were applied to determine the as-grown ZnO nanowires’ morphological and crystal structures, chemical composition and electronic states. Four-terminal current-voltage (I–V) measurements were used to examine the electrical conductance of the ZnO nanowire mats exposed to various testing gases with reference to the vacuum condition. Gas exposure experiments were conducted in a custom-built environmental chamber, which was filled with different testing gases. We observed the current being significantly influenced with ambient CO gas. The I–V behavior of CO gas was also found to be reversible and repeatable after the chamber evacuation, which indicates that the ZnO nanowire mats can be used for gas sensing purposes. A possible interactive model of nanowires and testing gas molecules is proposed to elucidate the sensing selective and sensitive mechanism for gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Bhoga, K. Singh, Ionics 13, 417 (2007)

    Article  Google Scholar 

  2. C. Nylander, J. Phys. E Sci. Instrum. 18, 736 (1985)

    Article  ADS  Google Scholar 

  3. P.T. Moseley, Meas. Sci. Technol. 8, 223 (1997)

    Article  ADS  Google Scholar 

  4. O.K. Varghese, C.A. Grimes, J. Nanosci. Nanotechnol. 3, 277 (2003)

    Article  Google Scholar 

  5. D. Kohl, Sens. Actuators B 1, 158 (1990)

    Article  Google Scholar 

  6. D.E. Williams, Sens. Actuators B 57, 1 (1999)

    Article  ADS  Google Scholar 

  7. A.M. Taurino, M. Epifani, T. Toccoli, S. Iannotta, P. Siciliano, Thin Solid Films 436, 52 (2003)

    Article  ADS  Google Scholar 

  8. G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007)

    Article  Google Scholar 

  9. X.-J. Huang, Y.-K. Choi, Sens. Actuators B 122, 659 (2007)

    Article  Google Scholar 

  10. M. Batzill, U. Diebold, Phys. Chem. Chem. Phys. 9, 2307 (2007)

    Article  Google Scholar 

  11. G. Korotcenkov, Mater. Sci. Eng. R 61, 1 (2008)

    Article  Google Scholar 

  12. C.O. Park, S.A. Akbar, J. Mater. Sci. 38, 4611 (2003)

    Article  Google Scholar 

  13. A. Kolmakov, X. Chen, M. Moscovits, J. Nanosci. Nanotechnol. 8, 111 (2008)

    Article  Google Scholar 

  14. X.-J. Huang, Y.-K. Choi, Sens. Actuators B 122, 659 (2007)

    Article  Google Scholar 

  15. E. Strelcov, Y. Lilach, A. Kolmakov, Nano Lett. 9, 2322 (2009)

    Article  ADS  Google Scholar 

  16. M. Law, D.J. Sirbuly, J.C. Johnson, J. Goldberger, R.J. Saykally, P. Yang, Science 305, 1269 (2004)

    Article  ADS  Google Scholar 

  17. Q.H. Li, Q. Wan, Y.X. Liang, T.H. Wang, Appl. Phys. Lett. 84, 4556 (2004)

    Article  ADS  Google Scholar 

  18. X.D. Bai, P.X. Gao, Z.L. Wang, E.G. Wang, Appl. Phys. Lett. 82, 4806 (2003)

    Article  ADS  Google Scholar 

  19. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  20. Z.L. Wang, J. Phys. Condens. Matter 16, R829 (2004)

    Article  ADS  Google Scholar 

  21. C. Klingshirn, Chem. Phys. Chem. 8, 782 (2007)

    Google Scholar 

  22. A.M. Peiró, P. Ravirajan, K. Govender, D.S. Boyle, P. O’Brien, D.D.C. Bradley, J. Nelson, J.R. Durrant, J. Math. Chem. 16, 2088 (2006)

    Article  Google Scholar 

  23. L. Miao, S. Tanemura, H.Y. Yang, S.P. Lau, Int. J. Nanotechnol. 6, 723 (2009)

    Article  ADS  Google Scholar 

  24. W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Mater. 16, 1009 (2004)

    Article  Google Scholar 

  25. H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, H. Kalt, Appl. Phys Lett. 91, 181112 (2007)

    Article  ADS  Google Scholar 

  26. Z.L. Wang, J.H. Song, Science 312, 242 (2006)

    Article  ADS  Google Scholar 

  27. M.H. Zhao, Z.L. Wang, S.X. Mao, Nano Lett. 4, 587 (2004)

    Article  ADS  Google Scholar 

  28. S.A. Kumar, S.M. Chen, Anal. Lett. 41, 141 (2008)

    Article  MathSciNet  Google Scholar 

  29. Z. Fan, J.G. Lu, Appl. Phys. Lett. 86, 123510 (2005)

    Article  ADS  Google Scholar 

  30. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004)

    Article  ADS  Google Scholar 

  31. W.I. Park, D.H. Kim, S.-W. Jung, G.-C. Yi, Appl. Phys. Lett. 80, 4232 (2002)

    Article  ADS  Google Scholar 

  32. Z.P. Sun, L. Liu, L. Zhang, D.Z. Jia, Nanotechnology 17, 2266 (2006)

    Article  ADS  Google Scholar 

  33. T.-J. Hsueh, C.-L. Hsu, S.-J. Chang, I.-C. Chen, Sens. Actuators B 126, 473 (2007)

    Article  Google Scholar 

  34. Y.W. Heo, L.C. Tien, D.P. Norton, B.S. Kang, F. Ren, B.P. Gila, S.J. Pearton, Appl. Phys. Lett. 85, 2002 (2004)

    Article  ADS  Google Scholar 

  35. T.-J. Hsueh, Y.-W. Chen, S.-J. Chang, S.-F. Wang, C.-L. Hsu, Y.-R. Lin, T.-S. Lin, I.-C. Chene, Sens. Actuators B 125, 498 (2007)

    Article  Google Scholar 

  36. D. Zhang, J. Jasinski, M. Dunlap, M. Badal, V.J. Leppert, V. Katkanant, Appl. Phys. A 92, 595 (2008)

    Article  ADS  Google Scholar 

  37. J. Jasinski, D. Zhang, J. Parra, V. Katkanant, V.J. Leppert, Appl. Phys. Lett. 92, 093104 (2008)

    Article  ADS  Google Scholar 

  38. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Chava, S., Berven, C. et al. Experimental study of electrical properties of ZnO nanowire random networks for gas sensing and electronic devices. Appl. Phys. A 100, 145–150 (2010). https://doi.org/10.1007/s00339-010-5567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5567-6

Keywords

Navigation