Skip to main content

Growth and Characterization of ZnO Nanostructures: Materials for CO and Ethanol Sensing

  • Conference paper
  • First Online:
Computational Mathematics, Nanoelectronics, and Astrophysics (CMNA 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 342))

Included in the following conference series:

  • 331 Accesses

Abstract

Controlled growth of ZnO-based nanostructures, starting from a vertical nanowall surface morphology to laterally grown highly anisotropic nanorods/wires formation has successfully been achieved by controlled thermal oxidation of thin Zn films for a temperature range of 100–700 °C. The as-grown ZnO nanorods were further used for carbon monoxide gas sensing at low temperatures (down to 150 °C) as well as ethanol vapour sensing at room temperatures. Thin films of Zn were deposited on glass and silicon substrate at room temperature, using a vacuum-assisted thermal evaporation technique. Structure, morphology and chemical property of ZnO layers were investigated using various surface characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS) and Raman spectroscopy. The XRD and SEM results are in very good correlation and showed vertical growth morphology of ZnO nanowall/sheet structures at a relatively lower oxidation temperature up to 400 °C. However, at higher oxidation temperature, lateral growths started to dominate over the vertical growth. Oxidation at 700 °C appeared with laterally grown one-dimensional (1D) ZnO nanowires/rods of high density. Raman spectroscopy and XPS results suggested that the vertical growth is mainly initiated by the metallic Zn film morphology, whereas the lateral growth is strongly dominated by the oxide (ZnO) formation. Finally, laterally grown ZnO nanorods could successfully sense CO gas and ethanol vapour. A drastic enhancement in CO gas sensitivity for a concentration of 230 ppm was clearly observed in dynamic gas flow mode even for a wide range of operating temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balan, K.N., Valarmathi, T.N., Reddy, M.S.H., Reddy, G.A., Sai Srinivas, J.K.M.K., Vasan.: IOP Conf. Series: Mater. Sci. Eng. 197, 012012 (2017a)

    Google Scholar 

  2. Kim, D., Chang, I.S.: Bioresour. Technol. 100, 4527–4530 (2009)

    Google Scholar 

  3. Li, C., Lv, M., Zuo, J., Huang, X.: Sensors 15, 3789–3800 (2015)

    Google Scholar 

  4. Leonardi, S.G.: Chemosensors 5, 17 (2017b)

    Google Scholar 

  5. Hubner, M., Simion, C.E., Tomescu-Stanoiu, A., Pokhrel, S., Barsana, N., Weimar, U.: Sens. Actuators B 153, 347–353 (2011)

    Google Scholar 

  6. Maziarz, W., Kusior, A., Zajac, A.T.: Beilstein J. Nanotechnol. 7, 1718–1726 (2016)

    Google Scholar 

  7. Tang, H., Yan, M., Zhang, H., Li, S., Ma, X., Wang, M., Yang, D.: Sens. Actuators B 114, 910–915 (2006)

    Google Scholar 

  8. Meyer, B.K., Alves, H., Hofmann, D.M., Kriegseis, W., Forster, D., Bertram, F., Christen, J., Hoffmann, A., Strabburg, M., Dworzak, M., Haboeck, U., Rodina, A.V.: Phys. Status Solidi B 241, 231 (2004)

    Google Scholar 

  9. Oxide, Z.: Bulk, Thin Films and Nanostructures, Processing, Properties and Application, editted by C. Elsevier, Jagadish and S. J. Pearton (2006)

    Google Scholar 

  10. Bacaksiz, E., Parlak, M., Tomakin, M., Ozcelik, A., Karakiz, M., Altunbas, J.: Alloy. Compd. 466, 447–450 (2008)

    Google Scholar 

  11. Janotti, A., Van de Walle, C.G.: Rep. Prog. Phys. 72(1–29), 126501 (2009)

    Google Scholar 

  12. Tsukazaki, A., Kubota, M., Ohtomo,  A., Onuma, T., Ohtani, K.: J. Appl. Phys. 44, 20 (2005)

    Google Scholar 

  13. Tang, Z.K., Wong, G.K.L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., Segawa, Y.: Appl. Phys. Lett. 72, 3237 (1998)

    Google Scholar 

  14. Alaie, Z., Nejad, S.M., Yousefi, M.H.: Mater. Sci. Semicond. Proce. 29, 16–55 (2015)

    Google Scholar 

  15. Basak, D., Amin, G., Mallik, B., Paul, G.K., Sen, S.K.: J. Cryst. Growth 256, 73–77 (2003)

    Google Scholar 

  16. Wang, X., Zhou, J., Song, J., Liu, J., Xu, N., Wang, Z.L.: Nano Lett. 6, 2768–2772 (2006)

    Google Scholar 

  17. Girtan, M.: Sol. Energy Mater. Sol. Cells 100, 153–161 (2012)

    Google Scholar 

  18. Leonardi, S.G.: Chemosensors 5, 1–28 (2017b)

    Google Scholar 

  19. Le Hung, N., Ahn, E., Park, S., Jung, H., Kim, H., Hong, S.K.: and D. Kim J. Vac. Sci. Technol. A 27, 1347–1351 (2009)

    Google Scholar 

  20. Krishnakumara, T., Jayaprakashb, R., Pinnac, N., Donatod, N., Bonavitae, A., Micalie, G., Neri, G.: Sens. Actuators B 143, 198–204 (2009)

    Google Scholar 

  21. Dilonardo, E., Penza, M., Alvisi, M., Di Franco, C., Palmisano, F., Torsi, L., Cioffi Beilstein, L.: J. Nanotechnol. 7, 22–31 (2016)

    Google Scholar 

  22. Zhang, P., Pan, G., Zhang, B., Zhen, J., Sun, Y.: Mater. Res. 17, 817–822 (2014)

    Google Scholar 

  23. Wahab, H.A., Salama, A.A., El-Saeid, A.A., Nur, O., Willander, M., Battisha, I.K.: Results in Phys. 3, 46–51 (2013)

    Google Scholar 

  24. Cao, B., Cai, W., Zeng, H.: Appl. Phy. Lett. 88, 161101–1–161101–3 (2006)

    Google Scholar 

  25. Wang, X., Ding, Y., Li, Z., Song, J., Wang, Z.L.: J. Phys. Chem. C113, 1791–1794 (2009)

    Google Scholar 

  26. Umar, A., Hahn, Y.B.: Nanotechnology 17, 2174–2180 (2006)

    Google Scholar 

  27. Zhang, H., Yang, D., Ji, Y., Ma, X., Xu, J., Que, D.: J. Phys. Chem. B 108, 3955–3958 (2004)

    Google Scholar 

  28. Zhang, D.H., Li, C., Liu, X.L., Tang, T.: and C. W. Zhou Appl. Phys. Lett. 83, 1845 (2003)

    Google Scholar 

  29. Wan, Q., Wang, T.H.: Chem. Commun. 30, 3841 (2005)

    Google Scholar 

  30. Li, Q.H., Liang, Y.X., Wan, Q., Wang, T.H.: Appl. Phys. Lett. 85, 6389 (2004)

    Google Scholar 

  31. Chen, Y.J., Nie, L., Xue, X.Y., Wang, Y.G., Wang, T.H.: Appl. Phys. Lett. 88, 083105 (2006)

    Google Scholar 

  32. Ramesh kumar, C., Subalakshmi, R.: J. Chem. Pharma. Res. 7, 459 (2015)

    Google Scholar 

  33. Zegadi, C., Abdelkebir, K., Chaumont, D., Adnane, M., Hamzaoui, S.: Adv. Mat. Phys. Chem. 4, 93 (2014)

    Google Scholar 

  34. Li, B.H., Zhang, J.Y., Zhao, D.X., Fan, X.W., Tang, Z.K.: J. Cryst. Growth 373, 301–302 (2007)

    Google Scholar 

  35. Tsoutsouva, M.G., Panagopoulos, C.N., Papadimitriou, D., Fasaki, I., Kompitsas, M.: Mater. Sci. Eng. B 176, 480–483 (2011)

    Google Scholar 

  36. Sun, X.W., Kwok, H.S.: J. Appl. Phys. 86, 408 (1999)

    Google Scholar 

  37. Jin, B.J., Im, S., Lee, S.Y.: Thin Solid Films 366, 107–110 (2000)

    Google Scholar 

  38. Hosseinnejad, M.T., Shirazi, M., Ghoranneviss, M., Hantehzadeh, M.R., Darabi, E.: Inorg. Organomet. Polym. 26, 405 (2016)

    Google Scholar 

  39. Lu, Y.M., Wang, X., Zhang, Z.Z., Shen, D.Z., Yao, B., Li, B.H., Zhang, J.Y., Zhao, D.X., Fan, X.M., Tang, Z.K.: J. Cryst. Growth 301–302, 373–377 (2007)

    Google Scholar 

  40. Mahmood, A., Ahmed, N., Raza, Q., Khan, T.M., Mehmood, M., Hassan, M.M., Mahmood, N.: Phys. Scr. 82(1–8), 065801 (2010)

    Google Scholar 

  41. Khanlary, M.R., Vahedi, V., Reyhani, A.: Molecules 17, 5021–5029 (2012)

    Google Scholar 

  42. Lim, K., Hamid, M.A.A., Shamsudin, R., Al Hardan, N.H., Mansor, I., Chiu, W.: Materials 9(4), 300 (2016)

    Google Scholar 

  43. Isah, K.U., Ramalan, A.M., Ahmadu, U., Ibrahim, S.O., Yabagi, J.A., Jolayemi, B.J.: Asian J. Appl. Sci. 9, 159–169 (2016)

    Google Scholar 

  44. A. Umar and Y. B. Hahn Nanotechnology 17, 2174–2180(2006)

    Google Scholar 

  45. Exarhos, G.J., Sharma, S.K.: Thin Solid Films 270, 27 (1995)

    Google Scholar 

  46. Ryu, H.W., Park, B.S., Akbar, S.A., Lee, W.S., Hong, K.J., Seo, Y.J., Shin, D.C., Park, J.S., Choi, G.P.: Sens. Actuators B 96, 717–722 (2003)

    Google Scholar 

  47. Kumar, N., Srivastava, A.K., Patel, H.S., Gupta, B.K., Varma. G.D.: Eur. J. Inorg. Chem. 2015, 1912–1923 (2015)

    Google Scholar 

  48. Ievtushenko, A., Khyzhun, O., Shtepliuk, I., Tkach, V., Lazorenko, V., Lashkarev, G.: Acta Phys. Pol. A 124, 858–861 (2013)

    Google Scholar 

  49. Zulkifli, Z., Subramanian, M., Tsuchiya, T., Rosmi, M.S., Ghosh, P., Kalita, G., Tanemura, M.: RSC Adv. 4, 64763 (2014)

    Google Scholar 

  50. Wen, Z., Zhu, L., Zhang, Z., Ye, Z.: Sens. Actuators B 208, 112–121 (2015)

    Google Scholar 

  51. Williams, D.E.: Sens. Actuators B 57, 1 (1999)

    Google Scholar 

  52. Kolmakov, A., Zhang, Y., Cheng, G., Moskovits, M.: Adv. Mater. 15, 997 (2003)

    Google Scholar 

  53. Takata, M., Tsubone, D., Yanagida, H.: J. Am. Ceram. Soc. 59, 4–8 (1976)

    Google Scholar 

  54. Aroutiounian, V.M., Aghababian, G.S.: Sens. Actuators B 50, 80–84 (1998)

    Google Scholar 

  55. Hsiao, C.C., Luo, L.S.: Sensors 14, 12219–12232 (2014)

    Google Scholar 

  56. Chang, S.J., Hsueh, T.J., Chen, I.C., Huang, B.R.: Nanotechnology 19(1–5), 175502 (2008)

    Google Scholar 

  57. Shewale, P.S., Yu, Y.S., Kim, J.H., Bobade, C.R., Uplane, M.D.: J. Anal. Appl. Pyrolysis 112, 348–356 (2015)

    Google Scholar 

  58. Wang, J., Yang, J., Han, N., Zhou, X., Gong, S., Yang, J., Hu, P., Chen, Y.: Mater. Des. 121, 69–76 (2017)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the DST-FIST sponsored powder XRD support of the Department of Physics and the vacuum deposition system of the Department of Mechanical Engineering of BITS Pilani for the Cu film deposition. We also acknowledge the instrumental support (gas sensing measurements) from the CEERI, Pilani. We are also thankful for the financial support from the ‘BITS Research Initiation Grant' from BITS, Pilani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhashis Gangopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choudhary, S., Agarwal, A., Saini, V., Hazra, A., Gangopadhyay, S. (2021). Growth and Characterization of ZnO Nanostructures: Materials for CO and Ethanol Sensing. In: Mukherjee, S., Datta, A., Manna, S., Sahoo, S.K. (eds) Computational Mathematics, Nanoelectronics, and Astrophysics. CMNA 2018. Springer Proceedings in Mathematics & Statistics, vol 342. Springer, Singapore. https://doi.org/10.1007/978-981-15-9708-4_12

Download citation

Publish with us

Policies and ethics