Skip to main content
Log in

Aligned growth and alignment mechanism of carbon nanotubes by hot filament chemical vapor deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) growth on Inconel sheets was carried out using hot filament chemical vapor deposition (HFCVD) in a gas mixture of methane and hydrogen. Scanning electron microscopy, transmission electron microscopy and field electron emission (FEE) measurement were applied to study the structure and FEE properties of the deposited CNTs. The effect of bias voltage and substrate surface roughness on the growth of vertically aligned carbon nanotubes was investigated. Well-aligned CNTs were synthesized by bias enhanced HFCVD. The results show that a bias of −500 V generates the best alignment. It has been observed that at the early growth stage, aligned and non-aligned CNTs are growing simultaneously on the unscratched sheets, whereas only aligned CNTs are growing on the scratched sheets. The results indicate that tip growth is not necessary for the electric field to align the CNTs, and larger catalyst particles created by scratching before the heat treatment can induce alignment of CNTs at the early growth stage. In addition, tree-like CNTs bundles grown on the scratched substrates exhibit better FEE performances than dense carbon nanotube forest grown on the unscratched substrates due to the reduced screen effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Mao, A. Garg, S.B. Sinnott, Nanotechnology 10, 273 (1999)

    Article  ADS  Google Scholar 

  2. M. Guillorn, X. Yang, A. Melechko, D. Hensley, M. Hale, V. Merkulov, M. Simpson, L. Baylor, W. Gardner, D. Lowndes, J. Vac. Sci. Technol. A 22, 35 (2004)

    Article  Google Scholar 

  3. H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, F. Okuyama, Appl. Phys. Lett. 78, 2578 (2001)

    Article  ADS  Google Scholar 

  4. S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49 (1998)

    Article  ADS  Google Scholar 

  5. Q. Ye, A. Cassell, H. Liu, K. Chao, J. Han, M. Meyyappan, Nano Lett. 4, 1301 (2004)

    Article  ADS  Google Scholar 

  6. T. Kyotani, L. Tsai, A. Tomita, Chem. Mater. 7, 1427 (1995)

    Article  Google Scholar 

  7. G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Nature 393, 346 (1998)

    Article  ADS  Google Scholar 

  8. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999)

    Article  ADS  Google Scholar 

  9. C. Bower, W. Zhu, S. Jin, O. Zhou, Appl. Phys. Lett. 77, 830 (2000)

    Article  ADS  Google Scholar 

  10. Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Appl. Phys. Lett. 79, 3155 (2001)

    Article  ADS  Google Scholar 

  11. Y. Avigal, R. Kalish, Appl. Phys. Lett. 78, 2291 (2001)

    Article  ADS  Google Scholar 

  12. L.H. Chen, J.F. AuBuchon, A. Gapin, C. Daraio, P. Bandaru, S. Jin, D.W. Kim, I.K. Yoo, C.M. Wang, Appl. Phys. Lett. 85, 5373 (2004)

    Article  ADS  Google Scholar 

  13. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, J. Appl. Phys. 90, 5308 (2001)

    Article  ADS  Google Scholar 

  14. V.I. Merkulov, D.H. Lowndes, Y.Y. Wei, G. Eres, Appl. Phys. Lett. 76, 3555 (2000)

    Article  ADS  Google Scholar 

  15. V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Appl. Phys. Lett. 79, 2970 (2001)

    Article  ADS  Google Scholar 

  16. V.I. Merkulov, A.V. Melechko, M.A. Guillorn, M.L. Simpson, D.H. Lowndes, J.H. Whealton, R.J. Raridon, Appl. Phys. Lett. 80, 4816 (2002)

    Article  ADS  Google Scholar 

  17. C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Appl. Phys. Lett. 77, 2767 (2000)

    Article  ADS  Google Scholar 

  18. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998)

    Article  ADS  Google Scholar 

  19. Z.F. Ren, Z.P. Huang, D.Z. Wang, J.G. Wen, J.W. Xu, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M.A. Reed, Appl. Phys. Lett. 75, 1086 (1999)

    Article  ADS  Google Scholar 

  20. Y. Chen, Z.L. Wang, J.S. Yin, D.J. Johnson, R.H. Prince, Chem. Phys. Lett 272, 178 (1997)

    Article  ADS  Google Scholar 

  21. Y. Chen, D.T. Shaw, L. Guo, Appl. Phys. Lett. 76, 2469 (2000)

    Article  ADS  Google Scholar 

  22. Q. Yang, C. Xiao, W. Chen, A. Singh, T. Asai, A. Hirose, Diamond Relat. Mater. 12, 1482 (2003)

    Article  Google Scholar 

  23. X. Lu, Q. Yang, C. Xiao, A. Hirose, Appl. Phys. A 82, 293 (2006)

    Article  ADS  Google Scholar 

  24. L. Chen, C. Wen, C. Liang, W. Hong, K. Chen, H. Cheng, C. Shen, C. Wu, K. Chen, Adv. Funct. Mater. 12, 687 (2002)

    Article  Google Scholar 

  25. Z. Huang, D. Wang, J. Wen, M. Sennett, H. Gibson, Z.F. Ren, Appl. Phys. A 74, 387 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoqin Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, W., Yang, Q. Aligned growth and alignment mechanism of carbon nanotubes by hot filament chemical vapor deposition. Appl. Phys. A 98, 659–669 (2010). https://doi.org/10.1007/s00339-009-5460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5460-3

PACS

Navigation