Skip to main content
Log in

Applications of excimer laser in nanofabrication

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper addresses novel applications of an excimer laser (308 nm wavelength, 20 ns pulse duration) in nanofabrication. Specifically, laser assisted nanoimprint lithography (LAN), self-perfection by liquefaction (SPEL), fabrication of metal nanoparticle arrays, and the fabrication of sub-10-nm nanofluidic channels are covered. In LAN, a polymeric resist is melted by the laser pulse, and then imprinted with a fused silica mold within 200 ns. LAN has been demonstrated in patterning various polymer nanostructures on different substrates with high fidelity and uniformity, and negligible heat effect on both the mold and the substrate. SPEL is a novel technology that uses selective melting to remove fabrication defects in nanostructures post fabrication. Depending on the boundary conditions, SPEL is categorized into three basic types: Open-SPEL that takes place with surface open, Capped-SPEL where a cap plate holds the top surface of the nanostructures and Guided-SPEL where a plate held a distance above the structure guides the molten materials to rise and form a new structure with better profile. Using SPEL (in less than 200 ns), we have achieved a reduction of line edge roughness (LER) of Cr lines to 1.5 nm (3σ) (560% improvement from the original), which is well below what the previous technologies permit, and a dramatic increase of the aspect ratio of a nanostructure. We have used SPEL to make sub-25-nm smooth cylindrical NIL pillar molds and smoothing Si waveguides. Excimer laser is also used to make metal nanoparticles. Monolayers of particles are fabricated on various substrates (silicon, fused silica and plastics) by exposing thin metal films to a single laser pulse. Periodic nanoparticle arrays have been fabricated by fragmentation of metal grating lines. The periodicity of these nanoparticles can be regulated by surface topography such as shallow trenches. Finally, an excimer laser pulse has been used to melt the top portion of 1D and 2D Si gratings to seal off the top surface, forming enclosed nanofluidic channel arrays. The channel width has been further reduced to 9 nm using self-limited thermal oxidation. DNA stretching using 20 nm wide self-sealed channels is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493–494 (1960)

    Article  ADS  Google Scholar 

  2. A.L. Schawlow, C.H. Townes, Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958)

    Article  ADS  Google Scholar 

  3. J.J. Ewing, Rare-gas halide lasers. Phys. Today 31, 32–39 (1978)

    Article  ADS  Google Scholar 

  4. Q.F. Xia, Nanostructure Engineering Using Pulsed Laser and Nanoimprint Lithography (Princeton University, Princeton, 2007)

    Google Scholar 

  5. J. Boneberg, J. Bischof, P. Leiderer, Nanosecond time-resolved reflectivity determination of the melting of metals upon pulsed laser annealing. Opt. Commun. 174, 145–149 (2000)

    Article  ADS  Google Scholar 

  6. J. Liu, H. Kurz, N. Bloembergen, Picosecond time-resolved plasma and temperature-induced changes of reflectivity and transmission in silicon. Appl. Phys. Lett. 41, 643–646 (1982)

    Article  ADS  Google Scholar 

  7. P.G. Carey, B.J. Woratschek, F. Bachmann, Progress toward excimerlaser metal planarization and via hole filling using in situ monitoring. Microelectron. Eng. 20, 89–106 (1993)

    Article  Google Scholar 

  8. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67, 3114–3116 (1995)

    Article  ADS  Google Scholar 

  9. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996)

    Article  ADS  Google Scholar 

  10. S.Y. Chou, P.R. Krauss, W. Zhang, L.J. Guo, L. Zhuang, Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997)

    Article  Google Scholar 

  11. D.R. Lide, CRC Handbook of Chemistry and Physics, 79th edn. (CRC Press, Boca Raton, 1998)

    Google Scholar 

  12. W. Zhang, S.Y. Chou, Multilevel nanoimprint lithography with submicron alignment over 4 in. Si wafers. Appl. Phys. Lett. 79, 845–847 (2001)

    Article  ADS  Google Scholar 

  13. S.Y. Chou, C. Keimel, J. Gu, Ultrafast and direct imprint of nanostructures in silicon. Nature 417(6891), 835–837 (2002)

    Article  ADS  Google Scholar 

  14. Z.N. Yu, H. Gao, S.Y. Chou, In situ real time process characterization in nanoimprint lithography using time-resolved diffractive scatterometry. Appl. Phys. Lett. 85, 4166–4168 (2004)

    Article  ADS  Google Scholar 

  15. Z.N. Yu, Subwavelength Gratings and Applications (Princeton University, Princeton, 2003)

    Google Scholar 

  16. Q.F. Xia, C. Keimel, H.X. Ge, Z.N. Yu, W. Wu, S.Y. Chou, Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography. Appl. Phys. Lett. 83, 4417–4419 (2003)

    Article  ADS  Google Scholar 

  17. A. Yariv, Optical Electronics, 4th edn. (Saunders College Publishing, Philadelphia, 1991)

    Google Scholar 

  18. GSolver, http://www.gsolver.com/

  19. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985)

    Google Scholar 

  20. S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd edn. (Oxford University Press, Oxford, 2001)

    Google Scholar 

  21. ABAQUS, http://www.abaqus.com/

  22. H. Du, R.C.A. Fuh, J.Z. Li, L.A. Corkan, J.S. Lindsey, PhotochemCAD: A computer-aided design and research tool in photochemistry. Photochem. Photobiol. 68, 141–142 (1998)

    Google Scholar 

  23. Z.N. Yu, H. Gao, S.Y. Chou, New developments in real-time imprint monitoring by scattering-of-light (RIMS), in The Third International Conference on Nanoimprint and Nanoprint Technology (NNT04). Vienna, Austria, 2004

  24. R.L. Morrison, Symmetries that simplify the design of spot array phase gratings. J. Opt. Soc. Am. A 9, 464–471 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  25. H. Gao, Nanoimprint Methods, Monitoring and Processes (Princeton University, Princeton, 2007)

    Google Scholar 

  26. Q.F. Xia, Z.N. Yu, H. Gao, S.Y. Chou, In situ real time monitoring of nanosecond imprint process. Appl. Phys. Lett. 89, 073107 (2006)

    Article  ADS  Google Scholar 

  27. Q. Xia, TRR measurement for polymers. Unpublished, 2003

  28. D.W. van Krevelen, Properties of Polymers, 3rd edn. (Elsevier Science, Amsterdam, 1990)

    Google Scholar 

  29. H.C. Scheer, H. Schulz, A contribution to the flow behaviour of thin polymer films during hot embossing lithography. Microelectron. Eng. 56, 311–332 (2001)

    Article  Google Scholar 

  30. H.D. Rowland, A.C. Sun, P.R. Schunk, W.P. King, Impact of polymer film thickness and cavity size on polymer flow during embossing: toward process design rules for nanoimprint lithography. J. Micromech. Microeng. 15, 2414–2425 (2005)

    Article  ADS  Google Scholar 

  31. Newport high-speed detector, http://www.newport.com

  32. Tektronix digital storage oscilloscope, http://www.tektronix.com

  33. S.Y. Chou, Q.F. Xia, Improved nanofabrication through guided transient-liquefaction. Nat. Nanotechnol. 3, 295–300 (2008)

    Article  Google Scholar 

  34. S.Y. Chou, Q.F. Xia, Self-repair and enhancement of nanostructures by liquificaiton under guiding conditions. US Patent 7282456, 2007

  35. International Technology Roadmap for Semiconductors, 2006 Update. http://www.itrs.net/Links/2006Update/FinalToPost/08_Lithography2006Update.pdf, 2006: p. Table 77b

  36. C. Herring, Some theorems on the free energies of crystal surfaces. Phys. Rev. 82, 87–93 (1951)

    Article  MATH  ADS  Google Scholar 

  37. Z.N. Yu, L. Chen, W. Wu, H.X. Ge, S.Y. Chou, Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography. J. Vac. Sci. Technol. B 21(5), 2089–2092 (2003)

    Article  Google Scholar 

  38. P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Ab initio molecular dynamics simulation of laser melting of silicon. Phys. Rev. Lett. 77, 3149–3152 (1996)

    Article  ADS  Google Scholar 

  39. M. Delfino, T.A. Reifsteck, Laser activated flow of phosphosilicate glass in integrated circuit devices. Electron Device Lett. 3(5), 116–118 (1982)

    Article  Google Scholar 

  40. D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Ultra-high-Q toroid microcavity on a chip. Nature 421(6926), 925–928 (2003)

    Article  ADS  Google Scholar 

  41. D.B. Tuckerman, A.H. Weisberg, Planarization of gold and aluminum thin-films using a pulsed laser. IEEE Electron. Device Lett. 7(1), 1–4 (1986)

    Article  Google Scholar 

  42. T. Sameshima, Self organized grain growth larger than 1 μm through pulsed-laser-induced melting of silicon films. Jpn. J. Appl. Phys. 2 32(10B), L1485–L1488 (1993)

    Article  Google Scholar 

  43. V. Constantoudis, G.P. Patsis, A. Tserepi, E. Gogolides, Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors. J. Vac. Sci. Technol. B 21(3), 1019–1026 (2003)

    Article  Google Scholar 

  44. Image Pro Plus, http://www.mediacy.com

  45. S.E. Orchard, On surface levelling in viscous liquids and gels. Appl. Sci. Res. A11, 451–464 (1962)

    Google Scholar 

  46. Y. Sato, Y. Kameda, T. Nagasawa, T. Sakamoto, S. Moriguchi, T. Yamamura, Y. Waseda, Viscosity of molten silicon and the factors affecting measurement. J. Cryst. Growth 249(3–4), 404–415 (2003)

    Article  ADS  Google Scholar 

  47. P.H. Keck, W. Vanhorn, The surface tension of liquid silicon and germanium. Phys. Rev. 91(3), 512–513 (1953)

    Article  ADS  Google Scholar 

  48. R.F. Brooks, A.T. Dinsdale, P.N. Quested, The measurement of viscosity of alloys—a review of methods, data and models. Meas. Sci. Technol. 16(2), 354–362 (2005)

    Article  ADS  Google Scholar 

  49. B.J. Keene, Review of data for the surface tension of pure metals. Int. Mat. Rev. 38(4), 157–192 (1993)

    Google Scholar 

  50. J. Brandrup, E.H. Immergut, Polymer Handbook, 3rd edn. (Wiley, New York, 1989)

    Google Scholar 

  51. S.Y. Chou, Q.F. Xia, Ultrafast selective self-repair of nanostructures by liquefaction, in The 49th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication (EIPBN) (AVS, Orlando, 2005)

    Google Scholar 

  52. E. Yablonovitch, T. Gmitter, Wetting angles and surface tension in the crystallization of thin liquid films. J. Electrochem. Soc. 131, 2625–2630 (1984)

    Article  Google Scholar 

  53. S.Y. Chou, L. Zhuang, Lithographically induced self-assembly of periodic polymer micropillar arrays. J. Vac. Sci. Technol. B 17, 3197–3202 (1999)

    Article  Google Scholar 

  54. S.Y. Chou, L. Zhuang, L.J. Guo, Lithographically induced self-construction of polymer microstructures for resistless patterning. Appl. Phys. Lett. 75, 1004–1006 (1999)

    Article  ADS  Google Scholar 

  55. L. Wu, S.Y. Chou, Electrohydrodynamic instability of a thin film of viscoelastic polymer underneath a lithographically manufactured mask. J. Non-Newtonian Fluid. Mech. 125, 91–99 (2005)

    Article  Google Scholar 

  56. N. Otsu, A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  57. W. Zhang, Development of Large-Area and Multilevel Nanoimprint Lithography and the Applications in MOSFETs (Princeton University, Princeton, 2001)

    Google Scholar 

  58. S.Y. Chou, P. Krauss, Imprint lithography with sub-10 nm feature size and high throughput. Microelectron. Eng. 35, 237–240 (1997)

    Article  Google Scholar 

  59. S. Park, H. Schift, H.H. Solak, J. Gobrecht, Stamps for nanoimprint lithography by extreme ultraviolet interference lithography. J. Vac. Sci. Technol. B 22(6), 3246–3250 (2004)

    Article  Google Scholar 

  60. K. Ansari, J.A. van Kan, A.A. Bettiol, F. Watt, Fabrication of high aspect ratio 100 nm metallic stamps for nanoimprint lithography using proton beam writing. Appl. Phys. Lett. 85(3), 476–478 (2004)

    Article  ADS  Google Scholar 

  61. K. Watanabe, T. Morita, R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui, Nanoimprint using three-dimensional microlens mold made by focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B 22(1), 22–26 (2004)

    Article  Google Scholar 

  62. I. Junarsa, P.F. Nealey, Fabrication of masters for nanoimprint, step and flash, and soft lithography using hydrogen silsesquioxane and x-ray lithography. J. Vac. Sci. Technol. B 22(6), 2685–2690 (2004)

    Article  Google Scholar 

  63. Q.F. Xia, S.Y. Chou, Fabrication of sub-25 nm diameter pillar nanoimprint molds with smooth sidewalls using self perfection by liquefaction (SPEL) and reactive ion etching. Nanotechnology 19, 455301 (2008)

    Article  ADS  Google Scholar 

  64. L.C. Kimerling, L.D. Negro, S. Saini, Y. Yi, D. Ahn, S. Akiyama, D. Cannon, J. Liu, J.G. Sandland, D. Sparacin, J. Michel, K. Wada, M.R. Watts, Monolithic silicon microphotonics. Top. Appl. Phys. 94, 89–119 (2004)

    Google Scholar 

  65. K.K. Lee, D.R. Lim, L.C. Kimerling, J. Shin, F. Cerrina, Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Opt. Lett. 26(23), 1888–1890 (2001)

    Article  ADS  Google Scholar 

  66. N. Tsumita, J. Melngailis, A.M. Hawryluk, H.I. Smith, Fabrication of x-ray masks using anisotropic etching of (110) Si and shadowing techniques. J. Vac. Sci. Technol. B 19, 1211–1213 (1981)

    Article  ADS  Google Scholar 

  67. J. Arentoft, T. Sondergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, L. Frandsen, Low-loss silicon-on-insulator photonic crystal waveguides. Electron. Lett. 38, 274–275 (2002)

    Article  Google Scholar 

  68. W.H. Juan, S.W. Pang, Controlling sidewall smoothness for micromachined Si mirrors and lenses. J. Vac. Sci. Technol. B 14, 4080–4084 (1996)

    Article  Google Scholar 

  69. Q.F. Xia, P.F. Murphy, H. Gao, S.Y. Chou, Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction. Nanotechnology 20, 345302 (2009)

    Article  Google Scholar 

  70. G. Schmid, Large clusters and colloids-metals in the embryonic state. Chem. Rev. 92, 1709–1727 (1992)

    Article  Google Scholar 

  71. W.X. Zhang, Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5, 323–332 (2003)

    Article  Google Scholar 

  72. W. Fritzsche, T.A. Taton, Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology 14, R63–R73 (2003)

    Article  ADS  Google Scholar 

  73. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)

    Article  ADS  Google Scholar 

  74. H.-M. So, J. Kim, W.S. Yun, J.W. Park, J.-J. Kim, D.-J. Won, Y. Kang, C. Lee, Molecule-based single electron transistor. Physica E 18, 243–244 (2003)

    ADS  Google Scholar 

  75. Z.C. Wang, G. Chumanov, WO3 sol–gel modified Ag nanoparticle arrays for electrochemical modulation of surface plasmon resonance. Adv. Mater. 15, 1285–1289 (2003)

    Article  Google Scholar 

  76. G. Leo, Y. Chushkin, S. Luby, E. Majkova, I. Kostic, M. Ulmeanu, A. Luches, M. Giersig, M. Hilgendorff, Ordering of free-standing co nanoparticles. Mater. Sci. Eng. C, Biomim. Supramol. Syst. 23, 949–952 (2003)

    Google Scholar 

  77. S.W. Chen, Langmuir-blodgett fabrication of two-dimensional robust crosslinked nanoparticle assemblies. Langmuir 17, 2878–2884 (2001)

    Article  Google Scholar 

  78. J. Bosbach, D. Martin, F. Stietz, T. Wenzel, F. Trager, Laser-based method for fabricating monodisperse metallic nanoparticles. Appl. Phys. Lett. 74, 2605–2607 (1999)

    Article  ADS  Google Scholar 

  79. T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, F. Trager, Shaping nanoparticles and their optical spectra with photons. Appl. Phys. B 69, 513–517 (1999)

    Article  ADS  Google Scholar 

  80. M. Kawasaki, M. Hori, Laser-induced conversion of noble metal-island films to dense monolayers of spherical nanoparticles. J. Phys. Chem. B 107, 6760–6765 (2003)

    Article  Google Scholar 

  81. D.Q. Yang, M. Meunier, E. Sacher, Excimer laser manipulation and pattering of gold nanoparticles on the SiO2/Si surface. J. Appl. Phys. 95, 5023–5026 (2004)

    Article  ADS  Google Scholar 

  82. S. Gupta, D. Choudhary, A. Sarma, Study of carbonaceous clusters in irradiated polycarbonate with UV-VIS spectroscopy. J. Polym. Sci. Part B, Polym. Phys. 38, 1589–1594 (2000)

    Article  Google Scholar 

  83. S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83, 135–137 (2003)

    Article  ADS  Google Scholar 

  84. S. Hofmann, C. Ducati, B. Kleinsorge, J. Robertson, Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl. Phys. Lett. 83, 4661–4663 (2003)

    Article  ADS  Google Scholar 

  85. M.K. Min, J.H. Cho, K.W. Cho, H. Kim, Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim. Acta 45, 4211–4217 (2000)

    Article  Google Scholar 

  86. J. Bischof, D. Scherer, S. Herminghaus, P. Leiderer, Dewetting modes of thin metallic films: nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 77, 1536–1539 (1996)

    Article  ADS  Google Scholar 

  87. J. Lee, W. Shimoda, T. Tanaka, Temperature dependence of surface tension of liquid Sn–Ag, In–Ag and In–Cu alloys. Meas. Sci. Technol. 16, 438–442 (2005)

    Article  ADS  Google Scholar 

  88. W.J. Yao, X.J. Han, M. Chen, B. Wei, Z.Y. Guo, Surface tension of undercooled liquid cobalt. J. Phys., Condens. Matter 14, 7479–7485 (2002)

    Article  ADS  Google Scholar 

  89. Q.F. Xia, S.Y. Chou, The fabrication of periodic metal nanodot arrays through pulsed laser melting induced fragmentation of metal nanogratings. Nanotechnology 20, 285310 (2009)

    Article  Google Scholar 

  90. L. Rayleigh, On the instability of jets. Proc. Lond. Math. Soc. 10, 4–13 (1878)

    Article  Google Scholar 

  91. F.A. Nichols, W.W. Mullins, Surface- (interface-) and volume-diffusion contributions to morphological changes driven by capilliarity. Trans. Metall. Soc. AIME 233, 1840–1848 (1965)

    Google Scholar 

  92. R.H. Austin, J.P. Brody, E.C. Cox, T. Duke, W. Volkmuth, Stretch genes. Phys. Today 50(2), 32–38 (1997)

    Article  Google Scholar 

  93. H. Asoh, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura, H. Masuda, Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid. J. Vac. Sci. Technol. B 19(2), 569–572 (2001)

    Article  Google Scholar 

  94. C.K. Harnett, G.W. Coates, H.G. Craighead, Heat-depolymerizable polycarbonates as electron beam patternable sacrificial layers for nanofluidics. J. Vac. Sci. Technol. B 19(6), 2842–2845 (2001)

    Article  Google Scholar 

  95. D.M. Cannon, B.R. Flachsbart, M.A. Shannon, J.V. Sweedler, P.W. Bohn, Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates. Appl. Phys. Lett. 85(7), 1241–1243 (2004)

    Article  ADS  Google Scholar 

  96. H. Cao, Z.N. Yu, J. Wang, J.O. Tegenfeldt, R.H. Austin, E. Chen, W. Wu, S.Y. Chou, Fabrication of 10 nm enclosed nanofluidic channels. Appl. Phys. Lett. 81(1), 174–176 (2002)

    Article  ADS  Google Scholar 

  97. W. Reisner, K.J. Morton, R. Riehn, Y.M. Wang, Z.N. Yu, M. Rosen, J.C. Sturm, S.Y. Chou, E. Frey, R.H. Austin, Statics and dynamics of single DNA molecules confined in nanochannels. Phys. Rev. Lett. 94(19) (2005)

  98. L.J. Guo, X. Cheng, C.F. Chou, Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett. 4(1), 69–73 (2004)

    Article  ADS  Google Scholar 

  99. H.P. Chou, C. Spence, A. Scherer, S. Quake, A microfabricated device for sizing and sorting DNA molecules. Proc. Natl. Acad. Sci. USA 96(1), 11–13 (1999)

    Article  ADS  Google Scholar 

  100. M. Stjernstrom, J. Roeraade, Method for fabrication of microfluidic systems in glass. J. Micromech. Microeng. 8(1), 33–38 (1998)

    Article  ADS  Google Scholar 

  101. S.W. Turner, A.M. Perez, A. Lopez, H.G. Craighead, Monolithic nanofluid sieving structures for DNA manipulation. J. Vac. Sci. Technol. B 16(6), 3835–3840 (1998)

    Article  Google Scholar 

  102. W.L. Li, J.O. Tegenfeldt, L. Chen, R.H. Austin, S.Y. Chou, P.A. Kohl, J. Krotine, J.C. Sturm, Sacrificial polymers for nanofluidic channels in biological applications. Nanotechnology 14(6), 578–583 (2003)

    Article  ADS  Google Scholar 

  103. Q.F. Xia, K.J. Morton, R.H. Austin, S.Y. Chou, Sub-10 nm self-enclosed self-limited nanofluidic channel arrays. Nano Lett. 8, 3830–3833 (2008)

    Article  ADS  Google Scholar 

  104. D.H. Auston, J.A. Golovchenko, A.L. Simons, C.M. Surko, T.N.C. Venkatesan, Dynamics of Q-switched laser annealing. Appl. Phys. Lett. 34(11), 777–779 (1979)

    Article  ADS  Google Scholar 

  105. A.D. McLachlan, F.P. Meyer, Temperature-dependence of the extinction coefficient of fused-silica for Co2-laser wavelengths. Appl. Opt. 26(9), 1728–1731 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangfei Xia.

Additional information

Q. Xia current address: Information and Quantum Systems Lab, Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Q., Chou, S.Y. Applications of excimer laser in nanofabrication. Appl. Phys. A 98, 9 (2010). https://doi.org/10.1007/s00339-009-5455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-009-5455-0

PACS

Navigation