Skip to main content
Log in

Engineering a material for biomedical applications with electric field assisted processing

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, using multiple co-flows we demonstrate in-situ encapsulation of nano-particles, liquids and/or gases in different structural morphologies, which can also be deposited in a designated pattern by a direct write method and surface modification can be controlled to release encapsulated material. The range of possibilities offered by exposing a material solution to an applied electric field can result in a plethora of structures which can accommodate a whole host of biomedical applications from microfluidic devices (microchannels, loaded with various materials), printed 3D structures and patterns, lab-on-a-chip devices to encapsulated materials (capsules, tubes, fibres, dense multi-layered fibrous networks) for drug delivery and tissue engineering. The structures obtained in this way can vary in size from micrometer to the nanometer range and the processing is viable for all states of matter. The work shown demonstrates some novel structures and methodologies for processing a biomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.M. Whitesides, Nat. Biotechnol. 21, 1161 (2003)

    Article  Google Scholar 

  2. J.S. Patton, Nat. Biotechnol. 24, 280 (2006)

    Article  Google Scholar 

  3. I.G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, A.M. Gañán-Calvo, Science 295, 1695 (2002)

    Article  ADS  Google Scholar 

  4. J. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferreira, J.A. Rogers, Nat. Mater. 6, 782 (2007)

    Article  ADS  Google Scholar 

  5. L. Setton, Nat. Mater. 7, 172 (2008)

    Article  ADS  Google Scholar 

  6. D. LaVan, T. McGuire, R. Langer, Nat. Biotechnol. 21, 1184 (2003)

    Article  Google Scholar 

  7. Z. Ahmad, H.B. Zhang, U. Farook, E. Stride, M. Edirisinghe, P. Colombo, J. R. Soc. Interf. 5 1255 (2008)

    Article  Google Scholar 

  8. Z. Ahmad, E.S. Thian, J. Huang, M.J. Edirisinghe, S.N. Jayasinghe, D.C. Ireland, R.A. Brooks, N. Rushton, W. Bonfield, S.M. Best, J. Biomed. Nanotechnol. 4, 185 (2008)

    Google Scholar 

  9. H. Chen, Y. Zhao, Y. Song, L. Jiang, J. Am. Chem. Soc. 130, 7800 (2008)

    Article  Google Scholar 

  10. A. Jaworek, A. Krupa, Exp. Fluids 27, 43 (1999)

    Article  Google Scholar 

  11. S. Samarasinghe, I. Pastoriza-Santos, M. Edirisinghe, L. Liz-Marzán, Appl. Phys. A, Mater. Sci. Process. 91, 141 (2008)

    Article  ADS  Google Scholar 

  12. Z. Ahmad, J. Huang, E.S. Thian, M.J. Edirisinghe, S.N. Jayasinghe, S.M. Best, W. Bonfield, R.A. Brooks, N. Rushton, J. Biomed. Nanotechnol. 2, 201 (2006)

    Article  Google Scholar 

  13. S.E. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, Proc. Natl. Acad. Sci. U.S.A. 105, 11613 (2008)

    Article  ADS  Google Scholar 

  14. J.A. Champion, S. Mitragotri, Pharm. Res. 26, 244 (2009)

    Article  Google Scholar 

  15. J.A. Champion, Y.K. Katare, S. Mitragotri, J. Control. Release 121, 3 (2007)

    Article  Google Scholar 

  16. S.E. Cross, B. Innes, M.S. Roberts, T. Tsuzuki, T.A. Robertson, P. McCormick, Skin Pharmacol. Phys. 20, 148 (2007)

    Article  Google Scholar 

  17. C.J. Cheng, L.Y. Chu, R.J. Xie, Colloid Interf. Sci. 300, 375 (2006)

    Article  Google Scholar 

  18. S.G. Kapsi, J.W. Ayres, Int. J. Pharm. 229, 193 (2001)

    Article  Google Scholar 

  19. R.E. Benfield, C.H. Harry, R.C. Jones, A.C. Swainair, Nature 353, 340 (1991)

    Article  ADS  Google Scholar 

  20. D.Z. Wang, S.N. Jayasinghe, M.J. Edirisinghe, Rev. Sci. Instrum. 76, 075105 (2005)

    Article  ADS  Google Scholar 

  21. Q.P. Pham, U. Sharma, A.G. Mikos, Tissue Eng. 12, 1197 (2006)

    Article  Google Scholar 

  22. Y. Wu, R.L. Clark, J. Colloid Interf. Sci. 310, 529 (2007)

    Article  Google Scholar 

  23. X.H. Zong, K. Kim, D.F. Fang, S.F. Ran, B.S. Hsiao, B. Chu, Polymer 43, 4403 (2002)

    Article  Google Scholar 

  24. J.T. McCann, D. Li, Y. Xia, J. Mater. Chem. 15, 735 (2005)

    Article  Google Scholar 

  25. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)

    Article  ADS  Google Scholar 

  26. A.L. Yarin, E. Zussman, B.J. Wendorff, A. Greiner, J. Mater. Chem. 17, 2585 (2007)

    Article  Google Scholar 

  27. C. Goldenstedt, A. Birer, D. Cathignol, S. Chesnais, Z.E. Bahri, C. Massard, J.L. Taverdet, C. Lafon, Ultrason. Sonochem. 15, 808 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Edirisinghe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, Z., Nangrejo, M., Edirisinghe, M. et al. Engineering a material for biomedical applications with electric field assisted processing. Appl. Phys. A 97, 31–37 (2009). https://doi.org/10.1007/s00339-009-5359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5359-z

PACS

Navigation