Skip to main content
Log in

Zn-diffused LiNbO3 waveguides fabricated by DC magnetron sputtering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

One of the most popular techniques to fabricate low-loss optical waveguides is the use of zinc (Zn) ions by thermally diffusing them into lithium niobate (LN) crystal. Along this line the fabrication procedure involving lower temperatures and shorter times of diffusion would be more desirable. To this end we report a new procedure using advantages based on the DC-Magnetron sputtering technique through a 3-step waveguide fabrication process in X-cut LN; the first step was sputtering 150 nm thick Zn layer on 400 K hot LN substrate; after this, an immediate oxidation of deposited Zn layer has been done just for 10 min. in 450°C. The final step was thermal diffusion of Zn into LN in a variety of times (1–3 h) and temperatures (600–800°C). All probable changes have been characterized by XRD, RBS and double beam Spectrophotometer.

Using the advantages of DC-Magnetron sputtering and simultaneous increase of substrate temperature, combined with an immediate oxidation step before final annealing; the encouraging results of RBS analysis revealed that the whole amount of Zn has diffused with a good gradient after annealing just for 3 h at 750°C; and also the comparative analysis of as-received and diffused LN demonstrated good stability in its optical and structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J.C. Soares, E. Cantelar, F. Cusso, G. Lifante, Appl. Phys. B 73, 555–558 (2001)

    Article  ADS  Google Scholar 

  2. L. Wooten, K.M. Kissa, A. Yi-Yan, J. Murphy, D.A. Lafaw, P.F. Hallemeier, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, D.E. Bossi, IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000)

    Article  Google Scholar 

  3. R. Navado, G. Lifante, Appl. Phys. A 72, 725–728 (2001)

    Article  ADS  Google Scholar 

  4. T. Suhara, M. Fujimura, M. Uemukai, in Photonics Based on Wavelength Integration and Manipulation. IPAP Books, vol. 2 (2005), pp. 137–150

  5. I. Suarez, R. Matesanz, I. Aguirre de Carcer, P.L. Pernas, F. Jaque, R. Blasco, G. Lifante, Sens. Actuators B 107, 88–92 (2005)

    Article  Google Scholar 

  6. L. Ming, C.B.E. Gawith, K. Gallo, M.V. O’Connor, G.D. Emmerson, P.G.R. Smith, Opt. Express 13(30) (2005)

  7. W.-M. Young, M.M. Fejer, R.S. Feigelson, M.J.F. Diogonnet, Integrated optical waveguide utilizing zinc oxide diffused into congruent and magnesium oxide doped lithium niobate crystals, United States Patent: 5,095,518, 1992

  8. G.H. Lee, Solid State Commun. 128, 351–354 (2003)

    Article  ADS  Google Scholar 

  9. C.-L. Jia, K.-M. Wang, X.-L. Wang, X.-J. Zhang, Opt. Express 13(13), 5093–5099 (2005)

    Article  ADS  Google Scholar 

  10. V.A. Fedorov, Yu.N. Korkishko, G. Lifante, F. Cusso, J. Eur. Ceram. Soc. 19, 1563–1567 (1999)

    Article  Google Scholar 

  11. I. Sayago, M. Alexandre, L. Ares, M.J. Fernandez, J.P. Santos, J. Gutierrez, M.C. Horrillo, Appl. Surf. Sci. 245, 273–280 (2005)

    Article  ADS  Google Scholar 

  12. Y. Wang, H. Wang, S. Li, S. Zhou, Y. Hang, J. Xu, J. Ye, S. Gu, R. Zhang, J. Cryst. Growth 248, 319–323 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Aghli-Moghadam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghli-Moghadam, L., Baghizadeh, A., Nabiyouni, G. et al. Zn-diffused LiNbO3 waveguides fabricated by DC magnetron sputtering. Appl. Phys. A 97, 805–810 (2009). https://doi.org/10.1007/s00339-009-5345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5345-5

PACS

Navigation