Skip to main content

Advertisement

Log in

Li doped ZnO thin film: effect of substrate temperature on structure, optical and electrical properties

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

RF magnetron sputtering technique was employed to deposit Li-doped ZnO thin films onto quartz substrate at different substrate temperatures ranging from room temperature (RT) to 500 \(^{\circ }\hbox {C}\). X-ray diffraction analysis revealed that the deposited films had a hexagonal-wurtzite crystal structure with preferred orientation along the c-axis. Increasing the substrate temperature improved the crystallinity and caused a significant increase in the crystallite size (182 nm) for the film deposited at 500 \(^{\circ }\hbox {C}\). The energy band gap of the films deposited at RT, 350, 400, 450 and 500 \(^{\circ }\hbox {C}\) were found to be 3.292, 3.282, 3.281, 3.28 and 3.269 eV, respectively. All films exhibited a broad UV-violet emission band centered on 407 nm and attributed to the radiative recombination processes near the band edge. A Hall mobility of \(\sim \)33.3 \(\hbox {cm}^{2}\)/V s, concentration (\(n\)) of \(\sim \)7.6 \(\times 10^{18}\,\hbox {cm}^{-3}\) and resistivity of \(\sim \)39.7 \(\Omega \)-cm were obtained for the film deposited at 500 \(^{\circ }\hbox {C}\). The results show that the substrate temperature plays a crucial role in the structural, morphological, optical and electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aghamalyan, N., Goulanian, E.K., Hovsepyan, R., Vardanyan, E., Zerrouk, A.: Effect of lithium impurity on the opto-electrical properties of zinc oxide films. phys. Status Solidi A 199, 425–430 (2003)

    Article  ADS  Google Scholar 

  • Bender, M., Fortunato, E., Nunes, P., Ferreira, I., Marques, A., Martins, R., Katsarakis, N., Cimalla, V., Kiriakidis, G.: Generation of optical bistability in a fiber Fabry–Perot resonator using mode-locked picosecond pulses. Jpn. J. Appl. Phys. 42, 435–437 (2003)

    Article  ADS  Google Scholar 

  • Bertazzi, F., Bellotti, E., Furno, E., Goano, M.: Experimental electron mobility in ZnO: a reassessment through Monte Carlo simulation. J. Mater. Sci Mater. Electron. 38, 1677–1683 (2009)

    Article  ADS  Google Scholar 

  • Chu, S., Olmedo, M., Yang, Z., Kong, J., Liu, J.L.: Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett. 93, 181106 (2008)

    Article  ADS  Google Scholar 

  • Fortunato, E., Raniero, L., Silva, L., Gonçalves, A., Pimentel, A., Barquinha, P., Aguas, H., Pereira, L., Gonçalves, G., Ferreira, I.: Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications. Sol. Energy Mater. Sol. Cells 92, 1605–1610 (2008)

    Article  Google Scholar 

  • Fortunato, E., Goncalves, A., Pimentel, A., Barquinha, P., Goncalves, G., Pereira, L., Ferreira, I., Martins, R.: Zinc oxide, a multifunctional material: from material to device applications. Appl. Phys. A 96, 197–205 (2009)

    Article  ADS  Google Scholar 

  • Lee, E.-C., Chang, K.: Possible p-type doping with group-I elements in ZnO. Phys. Rev. B 70, 115210–115214 (2004)

    Article  ADS  Google Scholar 

  • Liu, K., Sakurai, M., Aono, M.: ZnO-based ultraviolet photodetectors. Sensors 10, 8604–8634 (2010)

    Article  Google Scholar 

  • Lu, J.G., Zhang, Y.Z., Ye, Z.Z., Zeng, Y.J., He, H.P., Zhu, L.P., Huang, J.Y., Wang, L., Yuan, J., Zhao, B.H., Li, X.H.: Control of p- and n-type conductivities in Li-doped ZnO thin films. Appl. Phys. Lett. 89, 112113 (2006)

    Article  ADS  Google Scholar 

  • Onodera, A., Tamaki, N., Kawamura, Y., Yamashita, H.: Dielectric activity and ferroelectricity in piezoelectric semiconductor Li-doped ZnO. Jpn. J. Appl. Phys. 35, 5160–5162 (1996)

    Article  ADS  Google Scholar 

  • Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doǧan, S., Avrutin, V., Cho, S.J., Morkoç, H.: A comprehensive review of ZnO materials and devices. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  • Park, C., Zhang, S., Wei, S.: Origin of p-type doping difficulty in ZnO: the impurity perspective. Phys. Rev. B 66, 073202–073203 (2002)

    Article  ADS  Google Scholar 

  • Ruankham, P., Sagawa, T., Sakaguchi, H., Yoshikawa, S.: Vertically-aligned ZnO nanorods doped with lithium for polymer solar cells: defect related photovoltaic properties. J. Mater. Chem. 21, 9710–9715 (2011)

    Article  Google Scholar 

  • Salman, K.A., Omar, K., Hassan, Z.: Nanocrystalline ZnO film grown on porous silicon layer by radio frequency sputtering system. Mater. Lett. 68, 51–53 (2012)

    Article  Google Scholar 

  • Sanon, G., Rup, R., Mansingh, A.: Growth and characterization of tin oxide films prepared by chemical vapour deposition. Thin Solid Films 190, 287–301 (1989)

    Article  ADS  Google Scholar 

  • Shinde, S.S., Bhosale, C.H., Rajpure, K.Y., Photoch, J.: Photoelectrochemical properties of highly mobilized Li-doped ZnO thin films. J. Photochem. Photobiol. B 120, 1–9 (2013)

    Article  Google Scholar 

  • Srikant, V., Clarke, D.R.: Optical absorption edge of ZnO thin films: the effect of substrate. J. Appl. Phys. 81, 6357–6364 (1997)

    Article  ADS  Google Scholar 

  • Tan, S.T., Chen, B.J., Sun, X.W., Fan, W.J.: Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. J. Appl. Phys. 98, 013505 (2005)

    Article  ADS  Google Scholar 

  • Wardle, M.G., Goss, J.P., Briddon, P.R.: Theory of Li in ZnO: a limitation for Li-based p-type doping. Phys. Rev. B 71, 155205 (2005)

    Article  ADS  Google Scholar 

  • Willander, M., Nur, O., Sadaf, J.R., Qadir, M.I., Zaman, S., Zainelabdin, A., Bano, N., Hussain, I.: Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials 3, 2643–2667 (2010)

    Article  ADS  Google Scholar 

  • Zahedi, F., Dariani, R.S., Rozati, S.M.: Effect of substrate temperature on the properties of ZnO thin films prepared by spray pyrolysis. Mater. Sci. Semicond. Process. 16, 245–249 (2013)

    Article  Google Scholar 

  • Zeng, Y.J., Ye, Z.Z., Lu, J.G., Xu, W.Z., Zhu, L.P., Zhao, B.H., Limpijumnong, S.: Identification of acceptor states in Li-doped p-type ZnO thin films. Appl. Phys. Lett. 89, 1–3(2006)

    Google Scholar 

  • Zhang, D.H., Xue, Z.Y., Wang, Q.P.: The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering. J. Phys. D Appl. Phys. 35, 2837–2840 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by Program for New Century Excellent Talents in University (NCET-10-0066), 863 project Grants (2013AA031502) and the project of 2011RFLXG006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musbah Babikier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babikier, M., Li, Q., Wang, J. et al. Li doped ZnO thin film: effect of substrate temperature on structure, optical and electrical properties. Opt Quant Electron 47, 3655–3665 (2015). https://doi.org/10.1007/s11082-015-0256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0256-5

Keywords

Navigation