Skip to main content
Log in

An isotopic labeling study of the diffusion mechanism during oxidation of Si(100) in water vapor by successive oxidation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The diffusion mechanism during the wet oxidation of Si(100) at 1373 K was investigated by successive oxidations finally containing isotopic water. SiO2 was first thermally grown on Si in non-labeled oxidizing ambient (dry O2 or H2O) followed by isotopic water (H 182 O) to trace 18O species in SiO2. The distributions of 16O and 18O in the oxide film were analyzed by means of secondary ion mass spectroscopy (SIMS). SIMS depth profiles show that there was a wide overlap of both isotopes (18O and 16O) throughout the SiO2 layer, no matter whether the first oxidation step was carried out in dry O2 or H2O, and the concentration gradient of 18O decreased with increasing oxidation time at the second oxidation step by H 182 O. The results suggest that the diffusion mechanism in SiO2 during water vapor oxidation is exchange diffusion; H2O related oxidizing species diffuse through the network with significant exchange with the pre-existing oxygen in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.N. Lie, R.R. Razouk, B.E. Deal, J. Electrochem. Soc. 129, 2828 (1982)

    Article  Google Scholar 

  2. F. Fang, M.J. Ha, X.Y. Liu, J.M. Liu, Integr. Ferroelectr. 74, 31 (2005)

    Article  Google Scholar 

  3. J.R. Ligenza, J. Phys. Chem. 65, 2011 (1961)

    Article  Google Scholar 

  4. J.L. Ngau, P.B. Griffin, J.D. Plummer, J. Electrochem. Soc. 149, F98 (2002)

    Article  Google Scholar 

  5. M.-K. Lee, Y.-C. Tseng, C.-H. Chu, Appl. Phys. A 67, 541 (1998)

    Article  ADS  Google Scholar 

  6. R.R. Razouk, L.N. Lie, B.E. Deal, J. Electrochem. Soc. 128, 2214 (1981)

    Article  Google Scholar 

  7. B.E. Deal, A.S. Grove, J. Appl. Phys. 36, 3770 (1965)

    Article  ADS  Google Scholar 

  8. V.P. Parkhutik, V.A. Labunov, G.G. Chigir, Phys. Stat. Sol. A 96, 11 (1986)

    Article  Google Scholar 

  9. M. Uematsu, M. Gunji, M. Tsuchiya, K.M. Itoh, Thin Solid Films 515, 6596 (2007)

    Article  ADS  Google Scholar 

  10. A.V. Osipov, P. Patzner, P. Hess, Appl. Phys. A 82, 275 (2006)

    Article  ADS  Google Scholar 

  11. A. Slaoui, J.P. Ponpon, P. Siffert, Appl. Phys. A 43, 301 (1987)

    Article  ADS  Google Scholar 

  12. H.Z. Massoud, J.D. Plummer, E.A. Irene, J. Electrochem. Soc. 132, 2685 (1985)

    Article  Google Scholar 

  13. V.D. Borman, E.P. Gusev, Yu.Yu. Lebedinski, V.I. Troyan, Phys. Rev. B 49, 5415 (1994)

    Article  ADS  Google Scholar 

  14. E. Rosencher, A. Straboni, S. Rigo, G. Amsel, Appl. Phys. Lett. 34, 254 (1979)

    Article  ADS  Google Scholar 

  15. J. Blanc, Appl. Phys. Lett. 33, 424 (1978)

    Article  ADS  Google Scholar 

  16. M. Uematsu, H. Kageshima, K. Shiraishi, J. Appl. Phys. 89, 1948 (2001)

    Article  ADS  Google Scholar 

  17. E.A. Irene, R. Ghez, J. Electrochem. Soc. 124, 1757 (1977)

    Article  Google Scholar 

  18. A. Stadler, T. Sulima, J. Schulze, C. Fink, A. Kottantharayil, W. Hansch, H. Baumgartner, I. Eisele, W. Lerch, Solid-State Electron. 44, 831 (2000)

    Article  ADS  Google Scholar 

  19. H. Sunami, Solid. State Sci. Technol. 125, 892 (1978)

    Google Scholar 

  20. E.J. Opila, J. Am. Ceram. Soc. 82, 625 (1999)

    Article  Google Scholar 

  21. K. Garikipati, V.S. Rao, J. Comput. Phys. 174, 138 (2001)

    Article  MATH  ADS  Google Scholar 

  22. T. Akermark, Oxid. Met. 50, 167 (1998)

    Article  Google Scholar 

  23. E.P. Gusev, H.C. Lu, T. Gustafsson, E. Garfunkel, Phys. Rev. B 52, 1759 (1995)

    Article  ADS  Google Scholar 

  24. H.C. Lu, T. Gustafsson, E.P. Gusev, E. Garfunkel, Appl. Phys. Lett. 67, 1742 (1995)

    Article  ADS  Google Scholar 

  25. W. Kern, D.A. Puotinen, RCA Rev. June, 187 (1970)

  26. T. Ishitani, R. Shimizu, Appl. Phys. 6, 241 (1975)

    Article  ADS  Google Scholar 

  27. T. Ishitani, R. Shimizu, H. Tamura, Appl. Phys. 6, 277 (1975)

    Article  ADS  Google Scholar 

  28. Z. Zheng, R.E. Tressler, K.E. Spear, J. Electrochem. Soc. 137, 854 (1990)

    Article  Google Scholar 

  29. Z. Zheng, R.E. Tressler, K.E. Spear, J. Electrochem. Soc. 137, 2812 (1990)

    Article  Google Scholar 

  30. T. Bakos, S.N. Rashkeev, S.T. Pantelides, Phys. Rev. Lett. 88, 055508 (2002)

    Article  ADS  Google Scholar 

  31. J.-W. Lee, M. Tomozawa, J. Non-Cryst. Solids 353, 4633 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, C., Jiang, Y.M., Gong, J. et al. An isotopic labeling study of the diffusion mechanism during oxidation of Si(100) in water vapor by successive oxidation. Appl. Phys. A 97, 671–676 (2009). https://doi.org/10.1007/s00339-009-5286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5286-z

PACS

Navigation