Skip to main content
Log in

Laser-induced backside dry and wet etching of transparent materials using solid and molten tin as absorbers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser-induced backside wet and dry etching (LIBWE and LIBDE) methods were developed for micromachining of transparent materials. Comparison of these techniques is helpful in understanding the etching mechanism but was not realized due to complications in setting up comparable experimental conditions. In our comparative investigations we used a solid tin film for dry and molten tin droplets for wet etching of fused-silica plates. A tin–fused-silica interface was irradiated through the sample by a KrF excimer laser beam (λ=248 nm, FWHM=25 ns); the fluence was varied between 400 and 2100 mJ/cm2. A significant difference between the etch depths of the two investigated methods was not found. The slopes of the lines fitted to the measured data (slLIBDE=0.111 nm/mJ cm−2, slLIBDE=0.127 nm/mJ cm−2) were almost similar. Etching thresholds for LIBDE and LIBWE were approximately 650 and 520 mJ/cm2, respectively. To compare the dependence of etch rates on the pulse number, target areas were irradiated at different laser fluences and pulse numbers. With increasing pulse number a linear rise of depth was found for wet etching while for dry etching the etch depth increase was nonlinear. Secondary ion mass spectroscopic investigations proved that this can be due to the reconstruction of a new thinner tin-containing surface layer after the first pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, K. Midorikawa, Appl. Phys. A 79, 1001 (2004)

    Article  ADS  Google Scholar 

  2. R. Böhme, K. Zimmer, Appl. Surf. Sci. 239(1), 109 (2004)

    Article  ADS  Google Scholar 

  3. R. Böhme, D. Hirsch, K. Zimmer, Appl. Surf. Sci. 252(13), 4763 (2006)

    Article  ADS  Google Scholar 

  4. J. Wang, H. Niino, A. Yabe, Appl. Surf. Sci. 154–155(1), 571 (2000)

    Article  Google Scholar 

  5. J. Wang, H. Niino, A. Yabe, Appl. Phys. A 68(1), 111 (1999)

    Article  ADS  Google Scholar 

  6. K. Zimmer, R. Böhme, B. Rauschenbach, Appl. Phys. A 79(8), 1883 (2004)

    ADS  Google Scholar 

  7. G. Kopitkovas, T. Lippert, C. David, A. Wokaun, J. Gobrecht, Microelectron. Eng. 67–68, 438 (2003)

    Article  Google Scholar 

  8. Cs. Vass, B. Hopp, T. Smausz, F. Ignácz, Thin Solid Films 453–454(1), 121 (2004)

    Article  Google Scholar 

  9. Cs. Vass, D. Sebők, B. Hopp, Appl. Surf. Sci. 252(13), 4768 (2006)

    Article  ADS  Google Scholar 

  10. B. Hopp, Cs. Vass, T. Smausz, Appl. Surf. Sci. 253, 7922 (2007)

    Article  ADS  Google Scholar 

  11. B. Hopp, Cs. Vass, T. Smausz, Zs. Bor, J. Phys. D 39, 4843 (2006)

    ADS  Google Scholar 

  12. J. Ihlemann, Appl. Phys. A 93(1), 65 (2008)

    Article  ADS  Google Scholar 

  13. K. Zimmer, R. Böhme, Opt. Lasers Eng. 43(12), 1349 (2005)

    Article  Google Scholar 

  14. G. Kopitkovas, T. Lippert, N. Murazawa, C. David, A. Wokaun, J. Gobrecht, R. Winfield, Appl. Surf. Sci. 254(4), 1073 (2007)

    Article  ADS  Google Scholar 

  15. H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, R. Kurosaki, Appl. Surf. Sci. 252(13), 4387 (2006)

    Article  ADS  Google Scholar 

  16. Cs. Vass, K. Osvay, B. Hopp, Z. Bor, Appl. Phys. A 87(4), 611 (2007)

    Article  ADS  Google Scholar 

  17. R. Böhme, J. Zajadacz, K. Zimmer, B. Rauschenbach, Appl. Phys. A 80(2), 433 (2005)

    Article  ADS  Google Scholar 

  18. X.M. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, H. Niino, J. Photochem. Photobiol. A 166(1–3), 129 (2004)

    Article  Google Scholar 

  19. B. Hopp, T. Smausz, M. Bereznai, Appl. Phys. A 87, 77 (2007)

    Article  ADS  Google Scholar 

  20. http://www.minerals.net/mineral/silicate/tecto/quartz/quartz.htm

  21. J. Sullivan, J. Zhao, T.D. Bennett, Appl. Opt. 44(33), 7173 (2005)

    Article  ADS  Google Scholar 

  22. K. Zimmer, R. Böhme, D. Hirsch, B. Rauschenbach, J. Phys. D 39, 4651 (2006)

    ADS  Google Scholar 

  23. T. Smausz, T. Csizmadia, N. Kresz, Cs. Vass, Zs. Márton, B. Hopp, Appl. Surf. Sci. 254, 1091 (2007)

    Article  ADS  Google Scholar 

  24. R.G. Wilson, Int. J. Mass Spectrom. Ion Process. 143, 43 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hopp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopp, B., Smausz, T., Vass, C. et al. Laser-induced backside dry and wet etching of transparent materials using solid and molten tin as absorbers. Appl. Phys. A 94, 899–904 (2009). https://doi.org/10.1007/s00339-009-5078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5078-5

PACS

Navigation