Skip to main content

Processing of Transparent Materials Using Laser-Induced High-Energy State in Liquid

  • Chapter
  • First Online:
High-Energy Chemistry and Processing in Liquids
  • 463 Accesses

Abstract

High-energy states formed upon focused laser irradiation are a basic phenomenon in laser material processing. The high-energy states formed in liquid can also contribute to material processing. When laser pulses are focused onto the solid–liquid interface through solid materials, a high-energy state is generated at the interface. More precisely, it is generated in a thin liquid layer in contact with solid materials. Laser-induced backside wet etching (LIBWE) is a laser micromachining technique that utilizes the action of such high-energy states at the solid–liquid interface. Precise micromachining of hard and brittle transparent materials was achieved using this technique. The simple concept of this technique allows a variety of combinations of lasers, materials, and experimental setups for processing. While the concept for processing is relatively simple, the mechanism of the material removal is rather complex and has not yet been fully elucidated. A variety of material combination and conditions of laser irradiation is a factor making it more complex. Several attempts have been made to address the action of the high-energy state in liquid for material removal. Studies regarding LIBWE are overviewed in the context of the action of high-energy state generated in liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. M. Steen, J. Mazumder, Laser Materials Processing, 4th ed., Springer-Verlog London, 2010

    Google Scholar 

  2. R. Srinivasan, A.P. Ghosh, Ablation of liquid benzene by pulsed ultraviolet (248 or 308 nm) laser radiation. Chem. Phys. Lett. 143, 546–550 (1988). https://doi.org/10.1016/0009-2614(88)87064-7

    Article  CAS  Google Scholar 

  3. S. Georgiou, A. Koubenakis, Laser-induced material ejection from model molecular solids and liquids: mechanisms, implications, and applications. Chem. Rev. 103, 349–394 (2003). https://doi.org/10.1021/cr010429o

    Article  CAS  PubMed  Google Scholar 

  4. Y. Tsuboi, H. Fukumura, H. Masuhara, Nanosecond imaging study on laser ablation of liquid benzene. Appl. Phys. Lett. 64, 2745–2747 (1994). https://doi.org/10.1063/1.111461

    Article  CAS  Google Scholar 

  5. Y. Tsuboi, K. Hatanaka, H. Fukumura, H. Masuhara, The 248 nm excimer laser ablation of liquid benzene derivatives: a relation between ablation threshold and molecular photochemical reactivity. J. Phys. Chem. 98, 11237–11241 (1994). https://doi.org/10.1021/j100095a001

    Article  CAS  Google Scholar 

  6. K. Hatanaka, M. Kawao, Y. Tsuboi, H. Fukumura, H. Masuhara, Switching from photochemical to photothermal mechanism in laser ablation of benzene solutions. J. Appl. Phys. 82, 5799–5806 (1997). https://doi.org/10.1063/1.366447

    Article  CAS  Google Scholar 

  7. K. Toyota, S. Nakashima, T. Okada, Near-infrared laser-induced breakdown of liquid benzene. Chem. Phys. Lett. 323, 323–328 (2000). https://doi.org/10.1016/S0009-2614(00)00532-7

    Article  CAS  Google Scholar 

  8. J. Wang, H. Niino, A. Yabe, One-step microfabrication of fused silica by laser ablation of an organic solution. Appl. Phys. A 68, 111–113 (1999). https://doi.org/10.1007/s003390050863

    Article  CAS  Google Scholar 

  9. J. Ihlemann, B. Wolff-Rottke, Excimer laser micro machining of inorganic dielectrics. Appl. Surf. Sci. 106, 282–286 (1996). https://doi.org/10.1016/S0169-4332(96)00422-9

    Article  CAS  Google Scholar 

  10. J. Zhang, K. Sugioka, K. Midorikawa, High-speed machining of glass materials by laser-induced plasma-assisted ablation using a 532-nm laser. Appl. Phys. A 67, 499–501 (1998). https://doi.org/10.1007/s003390050810

    Article  CAS  Google Scholar 

  11. J. Zhang, K. Sugioka, K. Midorikawa, High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers. Appl. Phys. A 69, S876–S882 (1999). https://doi.org/10.1007/s003390051551

    Article  Google Scholar 

  12. Y. Hanada, K. Sugioka, I. Miyamoto, K. Midorikawa, Double-pulse irradiation by laser-induced plasma-assisted ablation (LIPAA) and mechanisms study. Appl. Surf. Sci. 248, 276–280 (2005). https://doi.org/10.1016/j.apsusc.2005.03.050

    Article  CAS  Google Scholar 

  13. Y. Hanada, K. Sugioka, K. Obata, S. V. Garnov, I. Miyamoto, K. Midorikawa, Transient electron excitation in laser-induced plasma-assisted ablation of transparent materials, J. Appl. Phys. 99, 043301 (2006). https://doi.org/10.1063/1.2171769

  14. B. Hopp, T. Smausz, T. Csizmadia, C. Vass, T. Csákó, G. Szabó, Comparative study of different indirect laser-based methods developed for microprocessing of transparent materials. J. Laser Micro/Nanoeng. 5, 80–85 (2010). https://doi.org/10.2961/jlmn.2010.01.0017

    Article  CAS  Google Scholar 

  15. K. Zimmer, R. Böhme, B. Rauschenbach, Laser etching of fused silica using an adsorbed toluene layer. Appl. Phys. A 79, 1883–1885 (2004). https://doi.org/10.1007/s00339-004-2961-y

    Article  CAS  Google Scholar 

  16. B. Hopp, Cs. Vass, T. Smausz, Laser induced backside dry etching of transparent materials, Appl. Surf. Sci. 253, 7922–7925 (2007). https://doi.org/10.1016/j.apsusc.2007.02.068

  17. B. Hopp, T. Smausz, C. Vass, G. Szabó, R. Böhme, D. Hirsch, K. Zimmer, Laser-induced backside dry and wet etching of transparent materials using solid and molten tin as absorbers. Appl. Phys. A 94, 899–904 (2009). https://doi.org/10.1007/s00339-009-5078-5

    Article  CAS  Google Scholar 

  18. J. Wang, H. Niino, A. Yabe, Laser ablation of poly(methylmethacrylate) doped with aromatic compounds: Laser intensity dependence of absorption coefficient. Jpn. J. Appl. Phys. 38, 871–876 (1999). https://doi.org/10.1143/JJAP.38.871

    Article  CAS  Google Scholar 

  19. J. Ikeno, A. Kobayashi, T. Kasai, YAG laser processing of fused silica glass with the aid of solution, Jpn. Soc. Precis. Eng. 55, 335–340 (1989) (in Japanese). https://doi.org/10.2493/jjspe.55.335

  20. S.I. Dolgaev, A.A. Lyalin, A.V. Simakin, G.A. Shafeev, Etching of sapphire assisted by copper-vapour laser radiation. Quantum Electron. 26, 65–68 (1996). https://doi.org/10.1070/QE1996v026n01ABEH000590

    Article  Google Scholar 

  21. S.I. Dolgaev, A.A. Lyalin, A.V. Simakin, V.V. Voronov, G.A. Shafeev, Fast etching and metallization of via-holes in sapphire with the help of radiation by copper vapor laser. Appl. Surf. Sci. 109–110, 201–205 (1997). https://doi.org/10.1016/S0169-4332(96)00660-5

    Article  Google Scholar 

  22. M. Ehrhardt, P. Lorenz, B. Han, R. Zhu, K. Zimmer, Laser-induced backside wet etching of SiO2 with a visible ultrashort laser pulse by using KMnO4 solution as an absorber liquid. J. Laser Micro/Nanoeng. 13, 47–54 (2018). https://doi.org/10.2961/jlmn.2018.02.0001

    Article  CAS  Google Scholar 

  23. M. Y. Tsvetkov, V. I. Yusupov, N. V. Minaev, P. S. Timashev, K. M. Golant, V. N. Bagratashvili, Effects of thermo-plasmonics on laser-induced backside wet etching of silicate glass, Laser Phys. Lett. 13, 106001 (2016). https://doi.org/10.1088/1612-2011/13/10/106001

  24. O.M. Zhigalina, D.N. Khmelenin, A.V. Atanova, N.V. Minaev, A.P. Sviridov, M.Y. Tsvetkov, A nanoscale modification of materials at thermoplasmonic laser-induced backside wet etching of sapphire. Plasmonics 15, 599–608 (2020). https://doi.org/10.1007/s11468-019-01091-9

    Article  CAS  Google Scholar 

  25. H. F. Chang, W. K. Yeung, W. C. Kao, M. Ehrhardt, K. Zimmer, J. Y. Cheng, Surface micromachining on a polymethylmethacrylate substrate using visible laser-induced backside wet etching with a KMnO4 solution as an absorber, J. Laser Appl. 32, 022014 (2020). https://doi.org/10.2351/1.5114659

  26. Z.Q. Huang, M.H. Hong, T.B.M. Do, Q.Y. Lin, Laser etching of glass substrates by 1064 nm laser irradiation. Appl. Phys. A 93, 159–163 (2008). https://doi.org/10.1007/s00339-008-4674-0

    Article  CAS  Google Scholar 

  27. X.Z. Xie, M.F. Hu, W.F. Chen, X. Wei, W. Hu, X.Y. Gao, X.R. Yuan, M.H. Hong, Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation. J. Laser Micro/Nanoeng. 8, 259–265 (2013). https://doi.org/10.2961/jlmn.2013.03.0012

    Article  CAS  Google Scholar 

  28. K.-K. Kwon, H. Kim, T. Kim, C. N. Chu, High aspect ratio channel fabrication with near-infrared laser-induced backside wet etching, J. Mater. Proc. Tech. 278, 116505 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116505

  29. Cs. Vass, B. Hopp, T. Smausz, F. Ignácz, Experiments and numerical calculations for the interpretation of the backside wet etching of fused silica, Thin Solid Films 453–454 121–126 (2004). https://doi.org/10.1016/j.tsf.2003.11.081

  30. J. Wang, H. Niino, A. Yabe, Micromachining of quartz crystal with excimer lasers by laser-induced backside wet etching. Appl. Phys. A 69, S271–S273 (1999). https://doi.org/10.1007/s003390051398

    Article  CAS  Google Scholar 

  31. J. Wang, H. Niino, A. Yabe, Micromachining of transparent materials with super-heated liquid generated by multiphotonic absorption of organic molecule. Appl. Surf. Sci. 154–155, 571–576 (2000). https://doi.org/10.1016/S0169-4332(99)00462-6

    Article  Google Scholar 

  32. R. Böhme, A. Braun, K. Zimmer, Backside etching of UV-transparent materials at the interface to liquids. Appl. Surf. Sci. 186, 276–281 (2002). https://doi.org/10.1016/S0169-4332(01)00630-4

    Article  Google Scholar 

  33. K. Zimmer, R. Böhme, A. Braun, B. Rauschenbach, F. Bigl, Excimer laser-induced etching of sub-micron surface relief gratings in fused silica using phase grating projection. Appl. Phys. A 74, 453–456 (2002). https://doi.org/10.1007/s003390101184

    Article  CAS  Google Scholar 

  34. R. Böhme, K. Zimmer, Effect of halogenated organic solvents on laser-induced backside wet etching of fused silica. Appl. Phys. A 83, 9–12 (2006). https://doi.org/10.1007/s00339-006-3483-6

    Article  CAS  Google Scholar 

  35. H. Niino, Y. Yasui, X. Ding, A. Narazaki, T. Sato, Y. Kawaguchi, A. Yabe, Surface micro-fabrication of silica glass by excimer laser irradiation of organic solvent. J. Photochem. Photobiol. A: Chem. 158, 179–182 (2003). https://doi.org/10.1016/S1010-6030(03)00032-7

    Article  CAS  Google Scholar 

  36. X. Ding, T. Sato, Y. Kawaguchi, H. Niino, Laser-induced backside wet etching of sapphire. Jpn. J. Appl. Phys. 42, L176–L178 (2003). https://doi.org/10.1143/JJAP.42.L176

    Article  CAS  Google Scholar 

  37. K. Fujito, T. Hashimoto, K. Samonji, J.S. Speck, S. Nakamura, Growth of AlN by the chemical vapor reaction process and its application to lateral overgrowth on patterned sapphire substrates. J. Cryst. Growth 272, 370–376 (2004). https://doi.org/10.1016/j.jcrysgro.2004.08.079

    Article  CAS  Google Scholar 

  38. Cs. Vass, D. Sebők, B. Hopp, Comparing study of subpicosecond and nanosecond wet etching of fused silica, Appl. Surf. Sci. 252, 4768–4772 (2006). https://doi.org/10.1016/j.apsusc.2005.07.118

  39. X. Ding, Y. Yasui, Y. Kawaguchi, H. Niino, A. Yabe, Laser-induced back-side wet etching of fused silica with an aqueous solution containing organic molecules. Appl. Phys. A 75, 437–440 (2002). https://doi.org/10.1007/s003390101131

    Article  CAS  Google Scholar 

  40. X. Ding, Y. Kawaguchi, H. Niino, A. Yabe, Laser-induced high-quality etching of fused silica using a novel aqueous medium. Appl. Phys. A 75, 641–645 (2002). https://doi.org/10.1007/s00339-002-1453-1

    Article  CAS  Google Scholar 

  41. K. Zimmer, R. Böhme, D. Ruthe, B. Rauschenbach, Backside laser etching of fused silica using liquid gallium. Appl. Phys. A 84, 455–458 (2006). https://doi.org/10.1007/s00339-006-3630-0

    Article  CAS  Google Scholar 

  42. K. Zimmer, R. Böhme, D. Hirsch, B. Rauschenbach, Backside etching of fused silica with UV laser pulses using mercury. J. Phys. D: Appl. Phys. 39, 4651–4655 (2006). https://doi.org/10.1088/0022-3727/39/21/022

    Article  CAS  Google Scholar 

  43. J.Y. Cheng, M.H. Yen, C.W. Wei, Y.C. Chuang, T.H. Young, Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip. J. Micromech. Microeng. 15, 1147–1156 (2005). https://doi.org/10.1088/0960-1317/15/6/005

    Article  CAS  Google Scholar 

  44. H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, R. Kurosaki, Laser ablation of toluene liquid for surface micro-structuring of silica glass. Appl. Surf. Sci. 252, 4387–4391 (2006). https://doi.org/10.1016/j.apsusc.2005.07.084

    Article  CAS  Google Scholar 

  45. S. Pissadakis, R. Böhme, K. Zimmer, Sub-micron periodic structuring of sapphire by laser induced backside wet etching technique. Opt. Exp. 15, 1428–1433 (2007). https://doi.org/10.1364/OE.15.001428

    Article  CAS  Google Scholar 

  46. Cs. Vass, K. Osvay, Fabrication of 150 nm period grating in fused silica by two-beam interferometric laser induced backside wet etching method, Opt. Exp. 14, 8354–8359 (2006). https://doi.org/10.1364/OE.14.008354

  47. B. Kiss, F. Ujhelyi, Á. Sipos, B. Farkas, P. Dombi, K. Osvay, C. Vass, Microstructuring of transparent dielectric films by twin-LIBWE method for OWLS applications. J. Laser Micro/Nanoeng. 8, 271–275 (2013). https://doi.org/10.2961/jlmn.2013.03.0014

    Article  CAS  Google Scholar 

  48. C. Vass, B. Kiss, R. Flender, Z. Felházi, P. Lorenz, M. Ehrhardt, K. Zimmer, Comparative study on grating fabrication in transparent materials by TWIN-LIBWE and ultrashort pulsed ablation techniques. J. Laser Micro/Nanoeng. 10, 38–42 (2015). https://doi.org/10.2961/jlmn.2015.01.0008

    Article  CAS  Google Scholar 

  49. J. Wang, H. Niino, A. Yabe, Microfabrication of a fluoropolymer film using conventional XeCl excimer laser by laser-induced backside wet etching. Jpn. J. Appl. Phys. 38, L761–L763 (1999). https://doi.org/10.1143/JJAP.38.L761

    Article  CAS  Google Scholar 

  50. G. Kopitkovas, T. Lippert, N. Murazawa, C. David, A. Wokaun, J. Gobrecht, R. Winfield, Laser processing of micro-optical components in quartz. Appl. Surf. Sci. 254, 1073–1078 (2007). https://doi.org/10.1016/j.apsusc.2007.09.048

    Article  CAS  Google Scholar 

  51. Y. Yasui, H. Niino, Y. Kawaguchi, A. Yabe, Microetching of fused silica by laser ablation of organic solution with XeCl excimer laser. Appl. Surf. Sci. 186, 552–555 (2002). https://doi.org/10.1016/S0169-4332(01)00635-3

    Article  CAS  Google Scholar 

  52. G. Kopitkovas, T. Lippert, C. David, A. Wokaun, J. Gobrecht, Fabrication of micro-optical elements in quartz by laser induced backside wet etching. Microelectron. Eng. 67–68, 438–444 (2003). https://doi.org/10.1016/S0167-9317(03)00099-6

    Article  CAS  Google Scholar 

  53. G. Kopitkovas, T. Lippert, C. David, A. Wokaun, J. Gobrecht, Surface micromachining of UV transparent materials. Thin Solid Films 453–454, 31–35 (2004). https://doi.org/10.1016/j.tsf.2003.11.074

    Article  CAS  Google Scholar 

  54. K. Zimmer, A. Braun, R. Böhme, Etching of fused silica and glass with excimer laser at 351 nm. Appl. Surf. Sci. 208–209, 199–204 (2003). https://doi.org/10.1016/S0169-4332(02)01372-7

    Article  CAS  Google Scholar 

  55. Z.Q. Huang, M.H. Hong, K.S. Tiaw, Q.Y. Lin, Quality glass processing by laser induced backside wet etching. J. Laser Micro/Nanoeng. 2, 194–199 (2007). https://doi.org/10.2961/jlmn.2007.03.0006

    Article  CAS  Google Scholar 

  56. M. Ehrhardt, G. Raciukaitis, P. Gecys, K. Zimmer, Microstructuring of fused silica by laser-induced backside wet etching using picosecond laser pulses. Appl. Surf. Sci. 256, 7222–7227 (2010). https://doi.org/10.1016/j.apsusc.2010.05.055

    Article  CAS  Google Scholar 

  57. M. Ehrhardt, G. Raciukaitis, P. Gecys, K. Zimmer, Laser-induced backside wet etching of fluoride and sapphire using picosecond laser pulses. Appl. Phys. A 101, 399–404 (2010). https://doi.org/10.1007/s00339-010-5833-7

    Article  CAS  Google Scholar 

  58. M.Y. Tsvetkov, V.I. Yusupov, P.S. Timashev, K.M. Golant, N.V. Minaev, S.I. Tsypina, V.N. Bagratashvili, On the role of supercritical water in laser-induced backside wet etching of glass. Russ. J. Phys. Chem. B 11, 1061–1069 (2017). https://doi.org/10.1134/S1990793117070181

    Article  CAS  Google Scholar 

  59. J.Y. Cheng, M.H. Yen, T.H. Young, Crack-free micromachining on glass using an economic Q-switched 532 nm laser. J. Micromech. Microeng. 16, 2420–2424 (2006). https://doi.org/10.1088/0960-1317/16/11/024

    Article  CAS  Google Scholar 

  60. J.Y. Cheng, M.H. Yen, W.C. Hsu, J.H. Jhang, T.H. Young, ITO patterning by a low power Q-switched green laser and its use in the fabrication of a transparent flow meter. J. Micromech. Microeng. 17, 2316–2323 (2007). https://doi.org/10.1088/0960-1317/17/11/019

    Article  CAS  Google Scholar 

  61. T. Sato, Y. Kawaguchi, R. Kurosaki, A. Narazaki, W. Watanabe, H. Niino, Laser-induced backside wet etching employing green DPSS laser and liquid metallic absorber. J. Laser Micro/Nanoeng. 6, 204–208 (2011). https://doi.org/10.2961/jlmn.2011.03.0006

    Article  CAS  Google Scholar 

  62. J. Y. Cheng, M. Z. Mousavi, C. Y. Wu, H. F. Tsai, Blue light emission from a glass/liquid interface for real-time monitoring of a laser-induced etching process, J. Micromech. Microeng. 21, 075019 (2011). https://doi.org/10.1088/0960-1317/21/7/075019

  63. T. Nakazumi, T. Sato, A. Narazaki, H. Niino, Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference, J. Micromech. Microeng. 26, 095015 (2016). https://doi.org/10.1088/0960-1317/26/9/095015

  64. M.H. Yen, C.W. Huang, W.C. Hsu, T.H. Young, K. Zimmer, J.Y. Cheng, Crack-free micromachining on glass substrates by visible LIBWE using liquid metallic absorbers. Appl. Surf. Sci. 257, 87–92 (2010). https://doi.org/10.1016/j.apsusc.2010.06.041

    Article  CAS  Google Scholar 

  65. Cs. Vass, B. Kiss, J. Kopniczky, B. Hopp, Etching of fused silica fiber by metallic laser-induced backside wet etching technique, Appl. Surf. Sci. 278, 241–244 (2013). https://doi.org/10.1016/j.apsusc.2012.11.163

  66. J.Y. Cheng, H.Y. Chen, M.Z. Mousavi, C.Y.Y. Chang, Crack-free micromachining of glass ceramic using visible LIBWE. J. Laser Micro/Nanoeng. 8, 253–258 (2013). https://doi.org/10.2961/jlmn.2013.03.0011

    Article  CAS  Google Scholar 

  67. J.Y. Cheng, W.C. Kao, M.Z. Mousavi, H.F. Chang, W.C. Hsu, M.H. Yen, M. Ehrhardt, K. Zimmer, High-quality surface micromachining on polymer using visible-LIBWE. J. Laser Micro/Nanoeng. 11, 117–123 (2016). https://doi.org/10.2961/jlmn.2016.01.0022

    Article  CAS  Google Scholar 

  68. K. Zimmer, R. Böhme, S. Pissadakis, L. Hartwig, G. Reisse, B. Rauschenbach, Backside etching of fused silica with Nd:YAG laser. Appl. Surf. Sci. 253, 2796–2800 (2006). https://doi.org/10.1016/j.apsusc.2006.05.059

    Article  CAS  Google Scholar 

  69. X. Zhao, M. Ehrhardt, P. Lorenz, B. Han, K. Zimmer, L. Xu, X. Ni, Nanosecond Nd:YAG laser induced backside wet etching of NaCl with eutectic gallium-indium alloy as absorbing liquid, Surf. Interfaces 17, 100353 (2019). https://doi.org/10.1016/j.surfin.2019.100353

  70. G. Kopitkovas, T. Lippert, C. David, S. Canulescu, A. Wokaun, J. Gobrecht, Fabrication of beam homogenizers in quartz by laser micromachining. J. Photochem. Photobiol. A: Chem. 166, 135–140 (2004). https://doi.org/10.1016/j.jphotochem.2004.05.001

    Article  CAS  Google Scholar 

  71. K. Zimmer, R. Böhme, Precise etching of fused silica for micro-optical applications. Appl. Surf. Sci. 243, 415–420 (2005). https://doi.org/10.1016/j.apsusc.2004.09.118

    Article  CAS  Google Scholar 

  72. T. Sato, Y. Kawaguchi, T. Kurosaki, A. Narazaki, W. Watanabe, H. Niino, Variation in the etch rate of LIBWE fabricating deep microtrenches. J. Laser Micro/Nanoeng. 7, 81–86 (2012). https://doi.org/10.2961/jlmn.2012.01.0016

    Article  CAS  Google Scholar 

  73. Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, H. Niino, Etching a micro-trench with a maximum aspect ratio of 60 on silica glass by laser-induced backside wet etching (LIBWE). Jpn. J. Appl. Phys. 44, L176–L178 (2005). https://doi.org/10.1143/JJAP.44.L176

    Article  CAS  Google Scholar 

  74. Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, H. Niino, Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches. J. Photochem. Photobiol. A: Chem. 182, 319–324 (2006). https://doi.org/10.1016/j.jphotochem.2006.05.033

    Article  CAS  Google Scholar 

  75. T. Sato, R. Kurosaki, A. Narazaki, Y. Kawaguchi, H. Niino, Flexible 3D deep microstructures of silica glass by laser-induced backside wet etching. Appl. Phys. A 101, 319–323 (2010). https://doi.org/10.1007/s00339-010-5790-1

    Article  CAS  Google Scholar 

  76. T. Sato, R. Kurosaki, Y. Kawaguchi, A. Narazaki, H. Niino, Fabrication of multiple slanted microstructures on silica glass by laser-induced backside wet etching. J. Laser Micro/Nanoeng. 5, 256–262 (2010). https://doi.org/10.2961/jlmn.2010.03.0014

    Article  CAS  Google Scholar 

  77. T. Sato, R. Kurosaki, A. Narazaki, Y. Kawaguchi, H. Niino, Flexible fabrication of deep microstructures by laser-induced backside wet etching, Proc. SPIE 7584, 758408 (2010). https://doi.org/10.1117/12.841583

  78. C. Vass, K. Osvay, B. Hopp, Z. Bor, 104 nm period grating fabrication in fused silica by immersion two-beam interferometric laser induced backside wet etching technique. Appl. Phys. A 87, 611–613 (2007). https://doi.org/10.1007/s00339-007-3891-2

    Article  CAS  Google Scholar 

  79. Cs. Vass, K. Osvay, M. Csete, B. Hopp, Fabrication of 550 nm gratings in fused silica by laser induced backside wet etching technique, Appl. Surf. Sci. 253, 8059–8063 (2007). https://doi.org/10.1016/j.apsusc.2007.02.087

  80. C. Vass, K. Osvay, T. Véső, B. Hopp, Z. Bor, Submicrometer grating fabrication in fused silica by interferometric laser-induced backside wet etching technique. Appl. Phys. A 93, 69–73 (2008). https://doi.org/10.1007/s00339-008-4636-6

    Article  CAS  Google Scholar 

  81. B. Kiss, Cs. Vass, P. Heck, P. Dombi, K. Osvay, Fabrication and analysis of transmission gratings produced by the indirect laser etching technique, J. Phys. D: Appl. Phys. 44, 415103 (2011). https://doi.org/10.1088/0022-3727/44/41/415103

  82. C.B. Arnold, A. Piqué, Laser Direct-Write Processing. MRS Bull. 32, 9–11 (2007). https://doi.org/10.1557/mrs2007.9

    Article  Google Scholar 

  83. H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, R. Kurosaki, Surface microstructuring of silica glass by laser-induced backside wet etching with a DPSS UV laser. Appl. Surf. Sci. 253, 8287–8291 (2007). https://doi.org/10.1016/j.apsusc.2007.02.099

    Article  CAS  Google Scholar 

  84. T. Sato, A. Narazaki, H. Niino, Fabrication of micropits by LIBWE for laser marking of glass materials. J. Laser Micro/Nanoeng. 12, 248–253 (2017). https://doi.org/10.2961/jlmn.2017.03.0013

    Article  CAS  Google Scholar 

  85. H. Fukumura, H. Masuhara, The mechanism of dopant-induced laser ablation. Possibility of cyclic multiphotonic absorption in excited states, Chem. Phys. Lett. 221, 373–378 (1994). https://doi.org/10.1016/0009-2614(94)00277-0

  86. Cs. Vass, T. Smausz, B. Hopp, Wet etching of fused silica: a multiplex study, J. Phys. D: Appl. Phys. 37, 2449–2454 (2004). https://doi.org/10.1088/0022-3727/37/17/018

  87. K. Zimmer, Analytical solution of the laser-induced temperature distribution across internal material interfaces. Int. J. Heat Mass Trans. 52, 497–503 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.034

    Article  CAS  Google Scholar 

  88. R. Böhme, K. Zimmer, The influence of the laser spot size and the pulse number on laser-induced backside wet etching. Appl. Surf. Sci. 247, 256–261 (2005). https://doi.org/10.1016/j.apsusc.2005.01.058

    Article  CAS  Google Scholar 

  89. M.Y. Tsvetkov, V.I. Yusupov, N.V. Minaev, A.A. Akovantseva, P.S. Timashev, K.M. Golant, B.N. Chichkov, V.N. Bagratashvili, On the mechanisms of single-pulse laser-induced backside wet etching. Opt. Laser Technol. 88, 17–23 (2017) https://doi.org/10.1016/j.optlastec.2016.05.020

    Article  CAS  Google Scholar 

  90. R. Böhme, D. Spemann, K. Zimmer, Surface characterization of backside-etched transparent dielectrics. Thin Solid Films 453–454, 127–132 (2004). https://doi.org/10.1016/j.tsf.2003.11.083

  91. G. Kopitkovas, V. Deckert, T. Lippert, F. Raimondi, C.W. Schneider, A. Wokaun, Chemical and structural changes of quartz surfaces due to structuring by laser-induced backside wet etching. Phys. Chem. Chem. Phys. 10, 3195–3202 (2008). https://doi.org/10.1039/B800090E

  92. C. Vass, J. Budai, Z. Schay, B. Hopp, Interpretation and modeling of laser-induced backside wet etching procedure. J. Laser Micro/Nanoeng. 5, 43–47 (2010). https://doi.org/10.2961/jlmn.2010.01.0010

  93. K. Zimmer, M. Ehrhardt, R. Böhme, Simulation of laser-induced backside wet etching of fused silica with hydrocarbon liquids, J. Appl. Phys. 107, 034908 (2010). https://doi.org/10.1063/1.3276204

  94. K. Zimmer, R. Böhme, M. Ehrhardt, B. Rauschenbach, Mechanism of backside etching of transparent materials with nanosecond UV-lasers. Appl. Phys. A 101, 405–410 (2010). https://doi.org/10.1007/s00339-010-5878-7

  95. T. Lee, D. Jang, D. Ahn, D. Kim, Effect of liquid environment on laser-induced backside wet etching of fused silica, J. Appl. Phys. 107, 033112 (2010). https://doi.org/10.1063/1.3294615

  96. Y. Kawaguchi, X. Ding, A. Narazaki, T. Sato, H. Niino, Transient pressure induced by laser ablation of liquid toluene: toward the understanding of laser-induced backside wet etching. Appl. Phys. A 79, 883–885 (2004). https://doi.org/10.1007/s00339-004-2580-7

  97. Y. Kawaguchi, X. Ding, A. Narazaki, T. Sato, H. Niino, Transient pressure induced by laser ablation of toluene, a highly laser-absorbing liquid. Appl. Phys. A 80, 275–281 (2005). https://doi.org/10.1007/s00339-003-2347-6

  98. R. Böhme, T. Otto, K. Zimmer, In situ reflectivity investigations of solid/liquid interface during laser backside etching. Appl. Surf. Sci. 252, 4392–4396 (2006). https://doi.org/10.1016/j.apsusc.2005.06.044

  99. A. Vogel, R. Engelhardt, U. Behnle, U. Parlitz, Minimization of cavitation effects in pulsed laser ablation illustrated on laser angioplasty. Appl. Phys. B 62, 173–182 (1996). https://doi.org/10.1007/BF01081122

  100. X. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, H. Niino, Site-selective dye deposition on microstructures of fused silica fabricated using the LIBWE method, Chem. Commun. 2168–2169 (2003). https://doi.org/10.1039/B306770J

  101. X. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, H. Niino, Fabrication of microarrays on fused silica plates using the laser-induced backside wet etching method. Langmuir 20, 9769–9774 (2004). https://doi.org/10.1021/la0498004

  102. P. Karásek, J. Grym, M. Roth, J. Planeta, F. Foret, Etching of glass microchips with supercritical water. Lab Chip 15, 311–318 (2015). https://doi.org/10.1039/C4LC00843J

  103. J.Y. Cheng, M.Z. Mousavi, C.Y. Wu, H.F. Tsai, Blue light plasma emission during LIBWE using 532 nm Q-switched nanosecond laser. J. Laser Micro/Nanoeng. 7, 87–92 (2012). https://doi.org/10.2961/jlmn.2012.01.0017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadatake Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato, T. (2022). Processing of Transparent Materials Using Laser-Induced High-Energy State in Liquid. In: Ishikawa, Y., et al. High-Energy Chemistry and Processing in Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-16-7798-4_10

Download citation

Publish with us

Policies and ethics