Skip to main content
Log in

Molecular dynamics study of size, temperature and strain rate effects on mechanical properties of gold nanofilms

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Temperature and extremely-high strain rate effects on mechanical properties of different-size gold nanofilms are investigated using molecular dynamics simulation. The numerical results clearly show a temperature softening effect on the material strength and Young’s modulus and demonstrate a critical film thickness that characterizes a transition from “smaller is softer” to “smaller is stronger”. It is also found that a higher strain rate yields a higher strength, whereas the modulus is much less sensitive to the loading rate. In addition, the Young’s modulus and strength of nanofilms studied are approximately 50%–60% smaller and 50–90 times higher than those of bulk gold, respectively. This suggests that the use of the mechanical properties of a bulk material in a continuum-based approach might be inadequate for the accurate prediction of the thermomechanical response for gold nanofilms caused by ultrashort-pulsed laser heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.G. Zhang, B.Y. Cao, X. Zhang, M. Fujii, K. Takahashi, Phys. Rev. B 74, 134109 (2006)

    Article  ADS  Google Scholar 

  2. R.A. Hatton, M.R. Willis, M.A. Chestersa, D. Briggs, J. Mater. Chem. 13, 722 (2003)

    Article  Google Scholar 

  3. J.-G. Guo, Y.-P. Zhao, J. Appl. Phys. 98, 074306 (2005)

    Article  ADS  Google Scholar 

  4. S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A 61, 33 (1995)

    Article  ADS  Google Scholar 

  5. M.D. Shirk, P.A. Molian, J. Laser Appl. 10, 18 (1988)

    Google Scholar 

  6. Y. Nakata, T. Okada, M. Maeda, Jpn. J. Appl. Phys. 42, L1452 (2003)

    Article  ADS  Google Scholar 

  7. F. Korte, J. Koch, B.N. Chichkov, Appl. Phys. A 79, 879 (2004)

    Article  ADS  Google Scholar 

  8. Y. Nakata, N. Miyanaga, T. Okada, Appl. Surf. Sci. 253, 6555 (2007)

    Article  ADS  Google Scholar 

  9. J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 81, 325 (2005)

    Article  ADS  Google Scholar 

  10. A.I. Kuznetsov, J. Koch, B.N. Chichkov, Appl. Phys. A (2008). doi:10.1007/s00339-008-4859-6

    Google Scholar 

  11. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997)

    Article  ADS  Google Scholar 

  12. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, M. Obara, Appl. Phys. A 69, S359 (1999)

    Article  Google Scholar 

  13. C. Momma, B.N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, B. Wellegehausen, Opt. Commun. 129, 134 (1996)

    Article  ADS  Google Scholar 

  14. M.D. Perry, B.C. Staurt, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, J. Appl. Phys. 85, 6803 (1999)

    Article  Google Scholar 

  15. L.A. Falkovsky, E.G. Mishchenko, J. Exp. Theor. Phys. 88, 84 (1999)

    Article  Google Scholar 

  16. J.K. Chen, J.E. Beraun, L.E. Grimes, D.Y. Tzou, Int. J. Solids Struct. 39, 3199 (2002)

    Article  MATH  Google Scholar 

  17. X. Wang, X. Xu, J. Therm. Stresses 25, 457 (2002)

    Article  Google Scholar 

  18. B.S. Yilbas, Jpn. J. Appl. Phys. 41, 5226 (2002)

    Article  ADS  Google Scholar 

  19. J.K. Chen, J.E. Beraun, C.L. Tham, Int. J. Eng. Sci. 42, 793 (2004)

    Article  Google Scholar 

  20. Y.P. Meshcheryakov, N.M. Bulgakova, Appl. Phys. A 82, 363 (2006)

    Article  ADS  Google Scholar 

  21. D.Y. Tzou, E.J. Pfautsch, J. Eng. Math. 61, 231 (2008)

    Article  MATH  Google Scholar 

  22. Y.-M. Lee, T.-W. Tsai, J. Phys. D: Appl. Phys. 41, 045308 (2008)

    Article  ADS  Google Scholar 

  23. E. Leveugle, L.V. Zhigilei, Appl. Phys. A 79, 753 (2004)

    ADS  Google Scholar 

  24. C. Cheng, X. Xu, Appl. Phys. A 79, 761 (2004)

    Article  ADS  Google Scholar 

  25. D.S. Ivanov, B. Rethfeld, G.M. O’Connor, T.J. Glynn, A.N. Volkov, L.V. Zhigilei, Appl. Phys. A 92, 791 (2008)

    Article  ADS  Google Scholar 

  26. C. Wei, K. Cho, D. Srivastava, Phys. Rev. B 67, 115407 (2003)

    Article  ADS  Google Scholar 

  27. H.S. Park, J.A. Zimmerma, Phys. Rev. B 72, 054106 (2005)

    Article  ADS  Google Scholar 

  28. L.A. Zepeda-Ruiz, B. Sadigh, J. Biener, A.M. Hodge, A.V. Hamza, Appl. Phys. Lett. 91, 101907 (2007)

    Article  ADS  Google Scholar 

  29. Z. Yang, Y.-P. Zhao, Surf. Rev. Lett. 14, 661 (2007)

    Article  Google Scholar 

  30. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)

    Article  ADS  Google Scholar 

  31. M. Allen, D. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987)

    MATH  Google Scholar 

  32. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)

    Article  Google Scholar 

  33. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  34. H. Ikeda, Y. Qi, T. Çagin, C. Samwer, W.L. Johnson, W.A. Goddard III, Phys. Rev. Lett. 82, 2900 (1999)

    Article  ADS  Google Scholar 

  35. S.J.A. Koh, H.P. Lee, C. Lu, Q.H. Cheng, Phys. Rev. B 72, 085414 (2005)

    Article  ADS  Google Scholar 

  36. M.F. Horstemeyer, M.I. Baskes, S.J. Plimpton, Acta Mater. 49, 4363 (2001)

    Article  Google Scholar 

  37. H.D. Espinosa, B.C. Prorok, J. Mater. Res. 38, 4125 (2003)

    Google Scholar 

  38. J. Greer, W. Oliver, W. Nix, Acta Mater. 53, 1821 (2005)

    Article  Google Scholar 

  39. J. Greer, W. Nix, Phys. Rev. B 73, 245410 (2006)

    Article  ADS  Google Scholar 

  40. H.A. Hu, Mech. Res. Commun. 33, 9 (2006)

    Article  Google Scholar 

  41. J. Marian, J. Knap, Int. J. Multiscale Commun. 5, 287 (2007)

    Article  Google Scholar 

  42. W.D. Callister, Materials Science and Engineering (Wiley, New York, 1994)

    Google Scholar 

  43. E.M. Savitskii, Handbook of Precious Metals (Hemisphere, New York, 1969)

    Google Scholar 

  44. D.J. Steinberg, S.G. Cochran, M.W. Guinan, J. Appl. Phys. 51, 1498 (1980)

    Article  ADS  Google Scholar 

  45. S.J. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  MATH  ADS  Google Scholar 

  46. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, Y., Chen, J.K. Molecular dynamics study of size, temperature and strain rate effects on mechanical properties of gold nanofilms. Appl. Phys. A 95, 357–362 (2009). https://doi.org/10.1007/s00339-008-4970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4970-8

PACS

Navigation