Skip to main content
Log in

Modeling the dynamics of one laser pulse surface nanofoaming of biopolymers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Self standing films of biopolymers like gelatine, collagen, and chitosan irradiated with single nanosecond or femtosecond laser pulse easily yield on their surface, a nanofoam layer, formed by a cavitation and bubble growth mechanism. The laser foams have interesting properties that challenge the molecular features of the natural extracellular matrix and which make them good candidates for fabrication of artificial matrix (having nanoscopic fibers, large availability of cell adhesion sites, permeability to fluids due to the open cell structure). As part of the mechanistic study, the dynamics of the process has been measured in the nanosecond timescale by recording the optical transmission of the films at 632.8 nm during and after the foaming laser pulse. A rapid drop 100→0% taking place within the first 100 ns supports the cavitation mechanism as described by the previous negative pressure wave model. As modeled a strong pressure rise (∼several thousands of bar) first takes place in the absorption volume due to pressure confinement and finite sound velocity, and then upon relaxation after some delay equal to the pressure transit time gives rise to a rarefaction wave (negative pressure) in which nucleation and bubble growth are very fast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003)

    Article  Google Scholar 

  2. S. Lazare, V. Tokarev, A. Sionkowska, M. Wisniewski, Appl. Phys. A 81, 465 (2005)

    Article  ADS  Google Scholar 

  3. S. Gaspard, M. Oujja, R. de Nalda, C. Abrusci, F. Catalina, L. Banares, S. Lazare, M. Castillejo, Appl. Surf. Sci. 254, 1179 (2007)

    Article  ADS  Google Scholar 

  4. M. Toshima, Y. Ohtani, O. Ohtani, Arch. Histol. Cytol. 67, 31 (2004)

    Article  Google Scholar 

  5. C.K. Ko, B.K. Milthorpe, C.D. McFarland, Eur. Cells Mater. 14, 1 (2007)

    Google Scholar 

  6. T. Erdmann, U.S. Schwarz, Eur. Phys. J. E 22, 123 (2007)

    Article  Google Scholar 

  7. M. Wisniewski, A. Sionkowska, H. Kaczmarek, S. Lazare, V. Tokarev, C. Belin, J. Photochem. Photobiol. 188, 192 (2007)

    Article  Google Scholar 

  8. S. Gaspard, M. Oujja, C. Abrusci, F. Catalina, S. Lazare, J.P. Desvergne, M. Castillejo, J. Photochem. Photobiol. 193, 187 (2008)

    Article  Google Scholar 

  9. S. Lazare, V. Tokarev, A. Sionkowska, M. Wisniewski, J. Phys: Conf. Ser. 59, 32 (2007)

    Article  ADS  Google Scholar 

  10. G. Paltauf, P.E. Dyer, Chem. Rev. 103, 487 (2003)

    Article  Google Scholar 

  11. S. Gaspard, M. Oujja, R. de Nalda, M. Castillejo, L. Bañares, S. Lazare, R. Bonneau, Appl. Phys. A 93, 209 (2008)

    Article  ADS  Google Scholar 

  12. A. Fenster, J.C. LeBlanc, W.B. Taylor, H.E. Johns, Rev. Sci. Instrum. 44, 689 (1973)

    Article  ADS  Google Scholar 

  13. S.M. Kathmann, Theor. Chem. Acc. 116, 169 (2006)

    Article  Google Scholar 

  14. H.J. Maris, C. R. Phys. 7, 946 (2006)

    Article  ADS  Google Scholar 

  15. J. Zeldovich, J. Exp. Theor. Phys. 12, 525 (1942)

    Google Scholar 

  16. V.F. Ur’yash, V.I. Sevast’yanov, N.Y. Kokurina, Y.V. Porunova, N.V. Perova, L.A. Faminskaya, Rus. J. Gen. Chem. 76, 1421 (2006)

    Article  Google Scholar 

  17. J.P. Colombier, P. Combis, R. Stoian, E. Audouard, Phys. Rev. B 75, 104105 (2007)

    Article  ADS  Google Scholar 

  18. B. Chimier, V.T. Tikhonchuk, L. Hallo, Phys. Rev. B 75, 195124 (2007)

    Article  ADS  Google Scholar 

  19. E.F. Carome, N.A. Clark, C.E. Moeller, Appl. Phys. Lett. 4, 95 (1964)

    Article  ADS  Google Scholar 

  20. J.C. Bushnell, D.J. McCloskey, J. Appl. Phys. 39, 5541 (1968)

    Article  ADS  Google Scholar 

  21. M.W. Sigrist, J. Appl. Phys. 60, R83 (1986)

    Article  ADS  Google Scholar 

  22. G.W. Diebold, M.I. Kahn, S.M. Park, Science 250, 101 (1990)

    Article  ADS  Google Scholar 

  23. G. Paltauf, H. Schmidt-Kloiber, M. Frenz, J. Acoust. Soc. Am. 104, 890 (1998)

    Article  ADS  Google Scholar 

  24. T.J. Allen, B.T. Cox, P.C. Beard, Proc. SPIE 5696, 233 (2005)

    Article  Google Scholar 

  25. B.T. Cox, P.C. Beard, J. Acoust. Soc. Am. 117, 3616 (2005)

    Article  ADS  Google Scholar 

  26. U. Escher, F.V. Schoenebeck, M. Jäckel, A. Gladun, Cryogenics 38, 109 (1998)

    Article  Google Scholar 

  27. B.D. Sanditov, S.B. Tsydypov, D.S. Sanditov, V.V. Mantalov, Polym. Sci. Ser. B 48, 173 (2006)

    Article  Google Scholar 

  28. B.D. Sanditov, S.B. Tsydypov, D.S. Sanditov, Acoust. Phys. 53, 594 (2007)

    Article  ADS  Google Scholar 

  29. R. Casalini, C.M. Roland, S. Capaccioli, J. Chem. Phys. 126, 184903 (2007)

    Article  ADS  Google Scholar 

  30. G.D. Barrera, J.A.O. Bruno, T.H.K. Barron, N.L. Allan, J. Phys. Condens. Matter 17, R217 (2005)

    Article  ADS  Google Scholar 

  31. F.W. Cross, R.K. Al-Dahir, P.E. Dyer, J. Appl. Phys. 64, 2194 (1988)

    Article  ADS  Google Scholar 

  32. X. Gu, H. Urbassek, J. Phys. D 39, 4621 (2006)

    Article  ADS  Google Scholar 

  33. C. Xiao, D.M. Heyes, Proc. R. Soc. Lond. A 458, 889 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. T. Kinjo, M. Matsumoto, Fluid Phase Equilib. 144, 343 (1998)

    Article  Google Scholar 

  35. T.T. Bazhirov, G.E. Norman, V.V. Stegailov, J. Phys: Condens. Matter 20, 114113 (2008)

    Article  ADS  Google Scholar 

  36. M.S. Pettersen, S. Balibar, H.J. Maris, Phys. Rev. B 49, 12062 (1994)

    Article  ADS  Google Scholar 

  37. J.C. Fisher, J. Appl. Phys. 19, 1062 (1948)

    Article  ADS  Google Scholar 

  38. D.C. Erlich, D.C. Wooten, R.C. Crewdson, J. Appl. Phys. 42, 5495 (1971)

    Article  ADS  Google Scholar 

  39. P.R. Williams, R.L. Williams, Mol. Phys. 102, 2091 (2004)

    Article  ADS  Google Scholar 

  40. A.A. Bogach, A.V. Utkin, J. Appl. Mech. Tech. Phys. 41, 752 (2000)

    Article  ADS  Google Scholar 

  41. F. Caupin, Phys. Rev. E 71, 51605 (2005)

    Article  ADS  Google Scholar 

  42. S. Balibar, F. Caupin, J. Phys.: Condens. Matter 15, S75 (2003)

    Article  ADS  Google Scholar 

  43. J. Bandrup, E.H. Immergut, in Polymer Handbook, 3rd edn. (Wiley-Interscience, New York, 1989)

    Google Scholar 

  44. S. Wu, Polymer Interface and Adhesion (Dekker, New York, 1982), pp. 181–196

    Google Scholar 

  45. V.G. Baidakov, Explosive Boiling of Superheated Cryogenic Liquids (Wiley-VCH, Berlin, 2007)

    Google Scholar 

  46. V.E. Vinogradov, P.A. Pavlov, V.G. Baidakov, J. Chem. Phys. 128, 234508 (2008)

    Article  ADS  Google Scholar 

  47. E.-A. Brujan, A. Vogel, J. Fluid. Mech. 558, 281 (2006)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lazare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazare, S., Bonneau, R., Gaspard, S. et al. Modeling the dynamics of one laser pulse surface nanofoaming of biopolymers. Appl. Phys. A 94, 719–729 (2009). https://doi.org/10.1007/s00339-008-4950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4950-z

PACS

Navigation