Skip to main content
Log in

Surface foaming of collagen, chitosan and other biopolymer films by KrF excimer laser ablation in the photomechanical regime

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Collagen, an important material made of a protein of the extracellular matrix, was extracted from rat tail tendons by acetic acid dissolution, and dry glassy films (15% water content) with smooth surfaces were casted from the solution with a thickness of ∼25 μm. Collagen and similar biopolymer films surface were exposed to single pulses of radiation of the KrF laser with increasing fluence. A white damaged area appears on the treated surface at a threshold of 0.5 J/cm2 with a single pulse and becomes more visible for higher fluence. SEM and profilometry of the ablated surface displays an important swelling (∼5–7 μm) and a microscopic foam structure indicative of the laser induced expansion of the excited material. This process is due to the explosive ablation (a critical phenomenon also called explosive boiling or phase explosion) of the irradiated material and produces upon laser heating a high concentration of bubbles within the polymer because of the relatively large absorption depth (20 μm) and the presence of a large amount of water in the material. Further bubble colliding and bursting produces a three-dimensional polymer micro-foam with interconnected pores. This is the first this result has been reported. The laser induced micro-foam may display some interesting properties for new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vogel, V. Venugopalan: Chem. Rev. 103, 577 (2003)

    Article  Google Scholar 

  2. N.I. Smith, K. Fujita, O. Nakamura, S. Kawata: Appl. Phys. Lett. 78, 999 (2001)

    Article  ADS  Google Scholar 

  3. G. Chen, T. Ushida, T. Tateishi: Mat. Sci. Eng. C 17, 63 (2001)

    Article  Google Scholar 

  4. L.J. Matienzo, S.K. Winnaker: Macromol. Mater. Eng. 287, 871 (2002)

    Article  Google Scholar 

  5. M. Kasaai, J. Arul, S.L. Chin, G. Charlet: J. Photochem. Photobiol. A 120, 201 (1999)

    Article  Google Scholar 

  6. S.L. Trockel, R. Srinivasan, B. Braren: Amer. J. Ophthalmol. 96, 710 (1983)

    Article  Google Scholar 

  7. K. Tsunoda, M. Sugiura, M. Sonoyama, H. Yajima, T. Ishii, J. Taniyama, H. Itoh: J. Photochem. Photobiol. A: 145, 195 (2001)

    Article  Google Scholar 

  8. D.N. Nikogosyan, H. Görner: J. Photochem. Photobiol. B 47, 63 (1998)

    Article  Google Scholar 

  9. K. Tsunoda, M. Sugiura, M. Sonoyama, H. Yajima, T. Ishii, J. Taniyiama, H. Itoh: J. Photochem. Photobiol. A: 145, 195 (2001)

    Article  Google Scholar 

  10. M. Sugiura, K. Tsunoda, H. Yajima, T. Ishii, H. Hitoh, Y. Nagai: Chem. Lett. 30, 428 (2001)

    Article  Google Scholar 

  11. S. Lazare, J. Lopez, F. Weisbuch: Appl. Phys. A 69, S1 (1999)

  12. F. Weisbuch, V.N. Tokarev, S. Lazare, C. Belin, J.L. Bruneel: Appl. Phys. A 75, 677 (2002)

    Article  ADS  Google Scholar 

  13. A. Sionkowska, M. Wisniewski, J. Skopinska, C.J. Kennedy, T.J. Wess: J. Photochem. Photobiol. A: 162, 545 (2004)

    Article  Google Scholar 

  14. A. Sionskowska, H. Kaczmarek, M. Wisniewski, J. Kowalonek, J. Skopinska: Surf. Sci. 566568, 608 (2004)

    Google Scholar 

  15. A. Sionkowska, M. Wisniewski, J. Skopinska, C.J. Kennedy, T.J. Wess: Biomaterials 25, 795 (2004)

    Article  Google Scholar 

  16. A.A. Oraevsky, S.L. Jacques, F. Tittel: J. Appl. Phys. 78, 1281 (1995)

    Article  ADS  Google Scholar 

  17. R.S. Dingus, R.J. Scammon: SPIE Proc. 1427, 45 (1991)

    Article  ADS  Google Scholar 

  18. D. Albagli, M. Dark, L.T. Perelman, L.T. Vonrosenberg, I. Itzkan, M.S. Feld: Opt. Lett. 19, 1684 (1994)

    Article  ADS  Google Scholar 

  19. P.E. Dyer, R. Srinivasan: Appl. Phys. Lett. 48, 445 (1986)

    Article  ADS  Google Scholar 

  20. J.C. Bushnell, D.J. McCloskey: J. Appl. Phys. 39, 5541 (1968)

    Article  ADS  Google Scholar 

  21. C.B. Scruby, R.J. Dewhurst, D.A. Hutchins, S.B. Palmer: J. Appl. Phys. 51, 6210 (1980)

    Article  ADS  Google Scholar 

  22. M. Sigrist: J. Appl. Phys. 60, R83 (1986)

  23. F.W. Cross, R.K. Al-Dhahir, P.E. Dyer: J. Appl. Phys. 64, 2194 (1988)

    Article  ADS  Google Scholar 

  24. G. Paltauf, H. Schmidt-Kloiber: Appl. Phys. A 62, 303 (1996)

    Article  ADS  Google Scholar 

  25. D. Kim, C.P. Grigoropoulos: Appl. Surf. Sci. 127129, 53 (1998)

    Google Scholar 

  26. J.M. Sun, B.S. Gerstman: Phys. Rev. E 59, 5772 (1999)

    Article  ADS  Google Scholar 

  27. S.I. Kudryashov, S.D. Allen: J. Appl. Phys. 95, 5820 (2004)

    Article  ADS  Google Scholar 

  28. L.V. Zhigilei, B.J. Garrison: J. Appl. Phys. 88, 1281 (2000)

    Article  ADS  Google Scholar 

  29. G. Paltauf, P. Dyer: Chem. Rev. 103, 487 (2003)

    Article  Google Scholar 

  30. A.A. Karabutov, N.B. Podymova, V.S. Letokhov: Appl. Phys. B 63, 545 (1996)

    Article  ADS  Google Scholar 

  31. S. Lazare, V. Tokarev: unpublished

  32. Other presentations use the Grüneisen coefficient see[16, 17, 18, 19, 20, 21, 22, 23, 24, 29, 30]

  33. R. Becker, W. Döring: Ann. Phys. (Leipzig) 24, 719 (1935)

    Article  ADS  Google Scholar 

  34. V.K. Shen, P.G. Debenedetti: J. Chem. Phys. 119, 4149 (2003)

    Article  Google Scholar 

  35. F. Abraham: Homogeneous Nucleation (Academic, N.Y. 1974)

  36. P.G. Debenedetti: Metastable Liquids (Princeton University Press, Princeton 1996)

  37. E. Dekel, S. Elieser, Z. Henis, E. Moshe, A. Ludmirsky, I.B. Goldberg: J. Appl. Phys. 84, 4851 (1998)

    Article  ADS  Google Scholar 

  38. V.P. Skripov: Metastable Liquids (Wiley, N.Y. 1974)

  39. F. Weisbuch, V.N. Tokarev, S. Lazare, C. Belin, J.L. Bruneel: Appl. Phys. A 75, 677 (2002)

    Article  ADS  Google Scholar 

  40. A. Miotello, R. Kelly: Appl. Phys. Lett. 67, 3535 (1995)

    Article  ADS  Google Scholar 

  41. E. Leveugle, L.V. Zhigilei: Appl. Phys. A 79, 753 (2004)

    ADS  Google Scholar 

  42. M. Blander, J.L. Katz: A.I.Ch.E.J. 21, 833 (1975)

    Article  Google Scholar 

  43. R. Niedrig, O. Bostanjoglo: J. Appl. Phys. 81, 480 (1997)

    Article  ADS  Google Scholar 

  44. J. Puibasset: PhD thesis, Univ. Paris (2000)

  45. E. Moshe, S. Eliezer, Z. Henis, M. Werdiger, E. Dekel, Y. Horowitz, S. Maman, I.B. Goldberg, D. Eliezer: Appl. Phys. Lett. 76, 1555 (2000)

    Article  ADS  Google Scholar 

  46. N.J. Wagner, B.I. Holian, A.F. Voter: Phys. Rev. A 45, 8457 (1992)

    Article  ADS  Google Scholar 

  47. J. Bruchon, T. Coupez: Mécanique & Industries 4, 331 (2003)

    Article  Google Scholar 

  48. A. Mahapatro, N.J. Mills, G.L.A. Sims: Cellular Polymers, 17, 252 (1998)

    Google Scholar 

  49. J.G. Lee, R.W. Flumerfelt: J. Colloid Interface Sci. 184, 335 (1996)

    Article  Google Scholar 

  50. Lord Kelvin (W. Thomson): Phil. Mag. 24, 503 (1898)

    Article  Google Scholar 

  51. H. Hiraoka, S. Lazare, T.J. Chuang, C.T. Rettner, H.E. Hunziker: Microelectr.Eng. 13, 429 (1991)

    Article  Google Scholar 

  52. Fig. 11 in P.E. Dyer, D.M. Karnakis, G.A. Oldershaw, G.C. Roberts: J. Phys. D: Appl. Phys. 29, 2555 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lazare.

Additional information

PACS

42.62; 61.82; 42.70-a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazare, S., Tokarev, V., Sionkowska, A. et al. Surface foaming of collagen, chitosan and other biopolymer films by KrF excimer laser ablation in the photomechanical regime. Appl. Phys. A 81, 465–470 (2005). https://doi.org/10.1007/s00339-005-3260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3260-y

Keywords

Navigation