Skip to main content
Log in

Modulating the diameter of carbon nanotubes in array form via floating catalyst chemical vapor deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Based on the analysis of catalyst particle formation and carbon nanotube (CNT) array growth process in floating catalyst chemical vapor deposition (CVD), delicately controlled gaseous carbon sources and catalyst precursors were introduced into the reactor for the controllable growth of CNT array. The low feeding rate of ferrocene was realized through low-temperature sublimation. With less ferrocene introduced into the reactor, the collision among the in situ formed iron atoms decreased, which led to the formation of smaller catalyst particles. The mean diameter of the CNT array, grown at 800oC, decreased from 41 to 31 nm when the ferrocene-sublimed temperature reduced from 80 to 60oC. Furthermore, low growth temperature was adopted in synthesis, through the modulation of the CNT diameter, by controlling the sintering of catalyst particles and the collision frequency. When the growth temperature was 600oC, the as-grown CNTs in the array were with a mean diameter of 10.2 nm. If propylene was used as carbon source, the diameter can be modulated in similar trends. The diameter of CNT can be modulated by the parameter of the operation using the same substrate and catalyst precursor without other equipment or previous treatment. Those results provide the possibility for delicately controllable synthesis of CNT array via simple floating catalyst CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274, 1701 (1996)

    Article  ADS  Google Scholar 

  2. A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, J. Appl. Phys. 97, 39 (2005)

    Article  Google Scholar 

  3. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998)

    Article  Google Scholar 

  4. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Science 283, 512 (1999)

    Article  ADS  Google Scholar 

  5. Y. Murakami, S. Chiashi, Y. Miyauchi, M.H. Hu, M. Ogura, T. Okubo, S. Maruyama, Chem. Phys. Lett. 385, 298 (2004)

    Article  ADS  Google Scholar 

  6. R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, Chem. Phys. Lett. 303, 467 (1999)

    Article  Google Scholar 

  7. B.C. Satishkumar, A. Govindaraj, C.N.R. Rao, Chem. Phys. Lett. 307, 158 (1999)

    Article  Google Scholar 

  8. Y.T. Lee, N.S. Kim, J. Park, J.B. Han, Y.S. Choi, H. Ryu, H.J. Lee, Chem. Phys. Lett. 372, 853 (2003)

    Article  ADS  Google Scholar 

  9. X.F. Zhang, A.Y. Cao, B.Q. Wei, Y.H. Li, J.Q. Wei, C.L. Xu, D.H. Wu, Chem. Phys. Lett. 362, 285 (2002)

    Article  ADS  Google Scholar 

  10. L. Tapaszto, K. Kertesz, Z. Vertesy, Z.E. Horvath, A.A. Koos, Z. Osvath, Z. Sarkozi, A. Darabont, L.P. Biro, Carbon 43, 970 (2005)

    Article  Google Scholar 

  11. A. Barreiro, D. Selbmann, T. Pichler, K. Biedermann, T. Gemming, M.H. Rummeli, U. Schwalke, B. Buchner, Appl. Phys. A 82, 719 (2006)

    Article  ADS  Google Scholar 

  12. J.Q. Huang, Q. Zhang, F. Wei, W.Z. Qian, D.Z. Wang, L. Hu, Carbon 46, 291 (2008)

    Article  Google Scholar 

  13. C. Singh, M.S. Shaffer, A.H. Windle, Carbon 41, 359 (2003)

    Article  Google Scholar 

  14. J. Su, Y. Yu, R.C. Che, Appl. Phys. A 90, 135 (2008)

    Article  ADS  Google Scholar 

  15. R. Kamalakaran, M. Terrones, T. Seeger, P. Kohler-Redlich, M. Ruhle, Y.A. Kim, T. Hayashi, M. Endo, Appl. Phys. Lett. 77, 3385 (2000)

    Article  ADS  Google Scholar 

  16. K.E. Kim, K.J. Kim, W.S. Jung, S.Y. Bae, J. Park, J. Choi, J. Choo, Chem. Phys. Lett. 401, 459 (2005)

    Article  ADS  Google Scholar 

  17. M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Ruhle, H.W. Kroto, D.R.M. Walton, Chem. Phys. Lett. 338, 101 (2001)

    Article  ADS  Google Scholar 

  18. B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P.M. Ajayan, Nature 416, 495 (2002)

    Article  ADS  Google Scholar 

  19. R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, J. Catal. 30, 86 (1973)

    Article  Google Scholar 

  20. R.T.K. Baker, Carbon 27, 315 (1989)

    Article  Google Scholar 

  21. M.P. Siegal, D.L. Overmyer, P.P. Provencio, Appl. Phys. Lett. 80, 2171 (2002)

    Article  ADS  Google Scholar 

  22. F. Wei, Q. Zhang, W.Z. Qian, H. Yu, Y. Wang, G.H. Luo, G.H. Xu, D.Z. Wang, Powder Technol. 183, 10 (2008)

    Article  Google Scholar 

  23. M.J. Bronikowski, Carbon 44, 2822 (2006)

    Article  Google Scholar 

  24. K. Liu, Y.H. Sun, L. Chen, C. Feng, X.F. Feng, K.L. Jiang, Y.G. Zhao, S.S. Fan, Nano Lett. 8, 700 (2008)

    Article  Google Scholar 

  25. A.J. Hart, A.H. Slocum, J. Phys. Chem. B 110, 8250 (2006)

    Article  Google Scholar 

  26. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306, 1362 (2004)

    Article  Google Scholar 

  27. E. Einarsson, Y. Murakami, M. Kadowaki, S. Maruyama, Carbon 46, 923 (2008)

    Article  Google Scholar 

  28. W.H. Wang, T.H. Hong, C.T. Kuo, Carbon 45, 97 (2007)

    Article  Google Scholar 

  29. R. Xiang, G. Luo, W. Qian, Y. Wang, F. Wei, Q. Li, Chem. Vap. Depos. 13, 533 (2007)

    Article  Google Scholar 

  30. A.Y. Cao, X.F. Zhang, C.L. Xu, J. Liang, D.H. Wu, X.H. Chen, B.Q. Wei, P.M. Ajayan, Appl. Phys. Lett. 79, 1252 (2001)

    Article  ADS  Google Scholar 

  31. K. Kuwana, K. Saito, in Proceedings of the Combustion Institute (Vol. 31, p. 1857) (2007)

  32. M.J.S. Monte, L. Santos, M. Fulem, J.M.S. Fonseca, C.A.D. Sousa, J. Chem. Eng. Data 51, 757 (2006)

    Article  Google Scholar 

  33. V.N. Emel’yanenko, S.P. Verevkin, O.V. Krol, R.M. Varushchenko, N.V. Chelovskaya, J. Chem. Thermodyn. 39, 594 (2007)

    Article  Google Scholar 

  34. Q. Zhang, W.P. Zhou, W.Z. Qian, R. Xiang, J.Q. Huang, D.Z. Wang, F. Wei, J. Phys. Chem. C 111, 14638 (2007)

    Article  Google Scholar 

  35. R. Xiang, G.H. Luo, W.Z. Qian, Q. Zhang, Y. Wang, F. Wei, Q. Li, A.Y. Cao, Adv. Mater. 19, 2360 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Zhang or Fei Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Huang, JQ., Zhao, MQ. et al. Modulating the diameter of carbon nanotubes in array form via floating catalyst chemical vapor deposition. Appl. Phys. A 94, 853–860 (2009). https://doi.org/10.1007/s00339-008-4904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4904-5

PACS

Navigation