Skip to main content
Log in

Growth and morphology of carbon nanostructures on nickel oxide nanoparticles in catalytic chemical vapor deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present study explores the conditions favorable for the growth of cylindrical carbon nanostructures such as multi-walled carbon nanotube (MWCNT) and carbon nanofiber by catalytic chemical vapor deposition (CCVD) method using nickel oxide-based catalyst nanoparticles of different average sizes as well as different levels of doping by copper oxide. The role of doping and the average size have been related to the observed melting behavior of nanoparticles of nickel oxide by thermal and diffraction analysis, and the importance of melting has been highlighted in the context of growth of cylindrical nanostructures. In the reducing environment prevailing in the CCVD chamber due to decomposition of flowing acetylene gas at elevated temperature, there is extensive reduction of oxide nanoparticles. Lack of melting and faster flow of carbon-bearing gases favor the formation of a carbon deposit cover over the catalyst nanoparticles giving rise to the formation of nanobeads. Melting allows rapid diffusion of carbon from the surface to inside catalyst particles, and reduced flow of gas lowers the rate of carbon deposit, both creating conditions favorable for the formation of cylindrical nanostructures, which grows around the catalyst particles. Smaller particle size and lower doping favor growth of MWCNT, while growth of fiber is commonly observed on larger particles having relatively higher level of doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.C. Dupuis, Prog. Mater Sci. 50, 929 (2005)

    Article  Google Scholar 

  2. M. Jana, A. Sil, S. Ray, Carbon 49, 5142 (2011)

    Article  Google Scholar 

  3. S. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi, C. Cepek, M. Cantoro, S. Pisana, A. Parvez, F. Cervantes-Sodi, A.C. Ferrari, R. Dunin-Borkowski, S. Lizzit, L. Petaccia, A. Goldoni, J. Robertson, Nano Lett. 7, 602 (2007)

    Article  ADS  Google Scholar 

  4. D.A. Gomez-Gualdron, G.D. McKenzie, J.F.J. Alvarado, P.B. Balbuena, ACS Nano 6, 720 (2012)

    Article  Google Scholar 

  5. M. Yu, S.Y. Wu, C.S. Jayanthi, Phys. E 42, 1 (2009)

    Article  Google Scholar 

  6. S. Amelinckx, A. Lucas, P. Lambin, Rep. Prog. Phys. 62, 1471 (1999)

    Article  ADS  Google Scholar 

  7. Y. Shibuta, S. Maruyama, Phys. B 323, 187 (2002)

    Article  ADS  Google Scholar 

  8. H. Yoshida, T. Uchiyama, M. de Moor, M. Stekelenburg, S. Takeda, Microsc. Microanal. 13, 712 (2007)

    Google Scholar 

  9. R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, R.J. Waite, J. Catal. 26, 51 (1972)

    Article  Google Scholar 

  10. K.K. Nanda, Pramana J. Phys. 72, 617 (2009)

    Article  ADS  Google Scholar 

  11. Z.L. Wang, J.M. Petroski, T.C. Green, M.A. El-Sayed, J. Phys. Chem. B 102, 6145 (1998)

    Article  Google Scholar 

  12. P. Buffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976)

    Article  ADS  Google Scholar 

  13. H.S. Shin, J. Yu, J.Y. Song, Appl. Phys. Lett. 91, 173106-1 (2007)

    ADS  Google Scholar 

  14. F. Ding, K. Bolton, A. Rosen, J. Vac. Sci. Technol., A 22, 1471 (2004)

    Article  ADS  Google Scholar 

  15. S.A. Manafi, S.H. Badiee, Res. Lett. Mater. Sci. 2008, 1 (2007)

    Article  Google Scholar 

  16. I. Kvande, Z. Yu, T. Zhao, M. Ronning, A. Holmen, D. Chen, Chem. Sustain. Dev. 14, 583 (2006)

    Google Scholar 

  17. A.K.M. Fazle Kibria, Y.H. Mo, K.S. Nahm, M.J. Kim, Carbon 40, 1241 (2002)

    Article  Google Scholar 

  18. Y. Li, X.B. Zhang, X.Y. Tao, J.M. Xu, W.Z. Huang, J.H. Luo, Z.Q. Luo, T. Li, F. Liu, Y. Bao, H.J. Geise, Carbon 43, 295 (2005)

    Article  Google Scholar 

  19. Y. Huh, J.Y. Lee, J. Cheon, Y.K. Hong, J.Y. Koo, T.J. Lee, C.J. Lee, J. Mater. Chem. 13, 2297 (2003)

    Article  Google Scholar 

  20. Y.T. Jang, J.H. Ahn, Y.H. Lee, B.K. Ju, Chem. Phys. Lett. 372, 745 (2003)

    Article  ADS  Google Scholar 

  21. J.S. Lee, G.H. Gu, H. Kim, J.S. Suh, I. Han, N.S. Lee, J.M. Kimb, G.S. Park, Syn. Metals 124, 307 (2001)

    Article  Google Scholar 

  22. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Nature 388, 52 (1997)

    Article  ADS  Google Scholar 

  23. J. Li, M. Moskovits, T.L. Haslett, Chem. Mater. 10, 1963 (1998)

    Article  Google Scholar 

  24. L. Gunawan, G.P. Johari, J. Phys. Chem. C 112, 20159 (2008)

    Article  Google Scholar 

  25. E. Haro-Poniatowski, R. Serna, C.N. Afonso, M. Jouanne, J.F. Morhange, P. Bosch, V.H. Lara, Thin Solid Films 453, 467 (2004)

    Article  ADS  Google Scholar 

  26. P. Gondi, R. Montanari, G. Costanza, Adv. Space Res. 29, 521 (2002)

    Article  ADS  Google Scholar 

  27. L.J.E. Hofer, E.M. Cohn, W.C. Peebles, J. Phys. Chem. 54, 1161 (1950)

    Article  Google Scholar 

  28. W. Tian, H.P. Sun, X.Q. Pan, J.H. Yu, M. Yeadon, C.B. Boothroyd, Y.P. Feng, R.A. Lukaszew, R. Clarke, Appl. Phys. Lett. 86, 131915-1 (2005)

    Article  ADS  Google Scholar 

  29. W.B. Pearson, A Handbook of lattice spacings and structures of metal and alloys (Pergamon Press, Oxford, 1958)

    Google Scholar 

  30. Y. Qi, T. Cagin, W.L. Johnson, W.A. Goddard, J. Chem. Phys. 115, 385 (2001)

    Article  ADS  Google Scholar 

  31. D.Y. Ding, J.N. Wang, F. Yu, L.F. Su, Appl. Phys. A 81, 805 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided for this study under Indo-Australia Strategic Research Fund (IASRF) of the Department of Science and Technology (DST), Government of India, for carrying out part of this work in the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, M., Sil, A. & Ray, S. Growth and morphology of carbon nanostructures on nickel oxide nanoparticles in catalytic chemical vapor deposition. Appl. Phys. A 117, 1425–1436 (2014). https://doi.org/10.1007/s00339-014-8568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8568-z

Keywords

Navigation