Skip to main content
Log in

Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics

Dielectric and electrical insulation properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we report the dielectric properties of composite systems (nanodielectrics) made of small amounts of mono dispersed magnetic nanoparticles embedded in a polymer matrix. It is observed from the transmission electron microscope images that the matrix polymeric material is confined in approximately 100 nm size cages between particle clusters. The particle clusters are composed of separated spherical particles which comprise unconnected networks in the matrix. The dielectric relaxation and breakdown characteristics of the matrix polymeric material are altered with the addition of nanometer size cobalt iron-oxide particles. The dielectric breakdown measurements performed at 77 K showed that these nanodielectrics are potentially useful as an electrical insulation material for cryogenic high voltage applications. Finally, structural and dielectric properties of nanocomposite dielectrics are discussed to present plausible reasons for the observed low effective dielectric permittivity values in the present and similar nanodielectric systems. It is concluded that polymeric nanoparticle composites would have low dielectric permittivity regardless of the permittivity of nanoparticles are when the particles are coordinated with a low dielectric permittivity surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Tuncer, I. Sauers, D.R. James, A.R. Ellis, M.P. Paranthaman, A. Goyal, K.L. More, Nanotechnology 18, 325704 (2007)

    Article  Google Scholar 

  2. E. Tuncer, I. Sauers, D.R. James, A.R. Ellis, M.P. Paranthaman, T. Aytuğ, S. Sathyamurthy, K.L. More, J. Li, A. Goyal, Nanotechnology 18, 025703 (2007)

    Article  ADS  Google Scholar 

  3. E. Tuncer, I. Sauers, D.R. James, A.R. Ellis, R.C. Duckworth, IEEE Trans. Dielectr. Electr. Insul. 15(1), 236 (2008)

    Article  Google Scholar 

  4. E. Tuncer, R.C. Duckworth, I. Sauers, D.R. James, A.R. Ellis, in CEIDP’07 2007 Annual Report. Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, 2007), pp. 225–227

  5. J.K. Nelson, J.C. Fothergill, Nanotechnology 15, 586 (2004)

    Article  ADS  Google Scholar 

  6. J.K. Nelson, Y. Hu, J. Phys. D: Appl. Phys. 38, 213 (2005)

    Article  ADS  Google Scholar 

  7. Q. Tan, P. Irwin, Y. Cao, IEE J. Trans. FM 126(11), 1153 (2006)

    Article  Google Scholar 

  8. Y. Cao, P.C. Irwin, K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11(5), 797 (2004)

    Article  Google Scholar 

  9. T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 12(5), 914 (2005)

    Article  Google Scholar 

  10. Y. Uozumi, Y. Kikuchi, N. Fukumoto, M. Nagata, Y. Wakimoto, T. Yoshimitsu, in CEIDP’07 2007 Annual Report. Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, 2007), pp. 228–231

  11. S. Gross, D. Camozzoa, V.D. Notoa, L. Armelaoa, E. Tondello, Eur. Polym. J. 43(3), 673 (2007)

    Article  Google Scholar 

  12. R.C. Smith, C. Liang, M. Landry, J.K.N.L.S. Schadler, IEEE. Trans. Dielectr. Electr. Insul. 15(1) (2008)

  13. T.J. Lewis, J. Phys. D: Appl. Phys. 38, 202 (2005)

    Article  ADS  Google Scholar 

  14. D. Fragiadakis, E. Logakis, P. Pissis, V.Y. Kramarenko, T.A. Shantalii, I.L. Karpova, K.S. Dragan, E.G. Privalko, A.A. Usenko, V.P. Privalko, vol. 10 (IOP, 2005), pp. 139–142

  15. R.D. Priestley, P. Rittigstein, L.J. Broadbelt, K. Fukao, J.M. Torkelson, J. Phys: Condens. Matter 19, 205120 (2007), 12pp

    Article  ADS  Google Scholar 

  16. R.D. Priestley, C.J. Ellison, L.J. Broadbelt, J.M. Torkelson, Science 309(5733), 456 (2005)

    Article  ADS  Google Scholar 

  17. I. Kalogeras, E. Neagu, Eur. Phys. J. E—Soft Matter 14(2), 193 (2004)

    Google Scholar 

  18. W.T.S. Huck, Chem. Commun. 33, 4143 (2005)

    Article  Google Scholar 

  19. E. Tuncer, Y.V. Serdyuk, S.M. Gubanski, IEEE Trans. Dielectr. Electr. Insul. 9(5), 809 (2002)

    Article  Google Scholar 

  20. C. Brosseau, A. Beroual, Prog. Mater. Sci. 48, 373 (2003)

    Article  Google Scholar 

  21. A. Sihvola, Electromagnetic Mixing Formulas and Applications. IEE Electromagnetic Waves Series, vol. 47 (The Institute of Electrical Engineers, London, 1999)

    Google Scholar 

  22. A.J. Rondinone, A.C.S. Samia, Z.J. Zhang, J. Phys. Chem. B 103, 6876 (1999)

    Article  Google Scholar 

  23. E. Tuncer, S.M. Gubański, IEEE Trans. Dielectr. Electr. Insul. 8, 310 (2001)

    Article  Google Scholar 

  24. E. Tuncer, R.J. Macdonald, J. Appl. Phys. 99, 074106 (2006)

    Article  ADS  Google Scholar 

  25. E. Tuncer, M. Wegener, R. Gerhard-Multhaupt, J. Non-Cryst. Solids 351(33-35), 2917 (2005)

    Article  ADS  Google Scholar 

  26. E. Tuncer, M. Wegener, P. Frübing, R. Gerhard-Multhaupt, J. Chem. Phys. 122, 084901 (2005)

    Article  ADS  Google Scholar 

  27. E. Tuncer, M. Furlani, B.-E. Mellander, J. Appl. Phys. 95(6), 3131 (2004)

    Article  ADS  Google Scholar 

  28. J.R. Macdonald, J. Comput. Phys. 157, 280 (2000)

    Article  MATH  ADS  Google Scholar 

  29. J.R. Macdonald, J. Chem. Phys. 102, 6241 (1995)

    Article  ADS  Google Scholar 

  30. E. Butkov, Mathematical Physics. Addison-Wesley Series in Advanced Physics (Addison-Wesley, Menlo Park, 1968)

    MATH  Google Scholar 

  31. P. Debye, Polar Molecules (Dover Publications, New York, 1945)

    Google Scholar 

  32. E. Tuncer, N. Bowler, I.J. Youngs, K.P. Lymer, Philos. Mag. 86, 2359 (2006)

    Article  ADS  Google Scholar 

  33. E. Tuncer, G.A. Niklasson, Opt. Commun. 281(17), 4374 (2008)

    Article  ADS  Google Scholar 

  34. J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1, 3rd edn. (Clarendon Press, Oxford, 1891), pp. 450–464, reprint by Dover

    Google Scholar 

  35. K.W. Wagner, Arch. Electrotech. II(9), 371 (1914)

    Article  Google Scholar 

  36. R. Sillars, J. Inst. Electr. Eng. 80, 378 (1937)

    Google Scholar 

  37. E. Tuncer, S.M. Gubański, Turk. J. Phys. 26, 1 (2002)

    Google Scholar 

  38. E. Tuncer, Licenciate thesis—Tech. rep. 338 L, Department of Electric Power Eng., Chalmers University of Technology, Gothenburg, Sweden, 2000

  39. W. Weibull, J. Appl. Mech. 18, 293 (1951)

    MATH  Google Scholar 

  40. W. Weibull, A Statistical Theory of the Strength of Materials. Ingeniörsvetenskapsakademiens Handlingar, vol. 151 (Generalstabens Litografiska Anstalts, Stockholm, 1939)

    Google Scholar 

  41. S.M. Rowland, R.M. Hill, L.A. Dissado, J. Phys. C: Solid State Phys. 19, 6263 (1986)

    Article  ADS  Google Scholar 

  42. E. Tuncer, I. Sauers, D.R. James, A.R. Ellis, M.O. Pace, J. Phys. D: Appl. Phys. 39, 4257 (2006)

    Article  ADS  Google Scholar 

  43. E.J. Gumbel, Statistics of Extremes (Columbia University Press, New York, 1958)

    MATH  Google Scholar 

  44. S.W. Looney, T.R. Gulledge Jr., Statistician 34(3), 297 (1985)

    Article  Google Scholar 

  45. A. Benard, E. Bos-Levenbach, Stat. Neerlandica 7, 163 (1953), translation in English can be found on http://www.barringer1.com/wa_files/The-plotting-of-observations-on-probability-paper.pdf

    Article  MathSciNet  Google Scholar 

  46. J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)

    MATH  Google Scholar 

  47. P.P.C. Sartoratto, A.V.S. Neto, E.C.D. Lima, A.L.C. Rodrigues de Sá, P.C. Morais, J. Appl. Phys. 97, 10Q917 (2005)

    Article  Google Scholar 

  48. E. Tuncer, Turk. J. Phys. 27, 121 (2003). arXiv:cond-mat/0107384

    Google Scholar 

  49. E. Tuncer, S.M. Gubański, B. Nettelblad, J. Appl. Phys. 89(12), 8092 (2001)

    Article  Google Scholar 

  50. E. Tuncer, B. Nettelblad, S.M. Gubański, J. Appl. Phys. 92(8), 4612 (2002)

    Article  ADS  Google Scholar 

  51. M. George, S.S. Nair, K.A. Malini, P.A. Joy, M.R. Anantharaman, J. Phys. D: Appl. Phys. 40, 1593 (2007)

    Article  ADS  Google Scholar 

  52. C.R. Vestal, Final Report AFRL-ML-WP-TR-2006-4209, Air Force Research Laboratory, Dayton, OH, 2006

  53. P.C. Fannin, C.N. Marin, I. Malaescu, N. Stefu, J. Phys.: Condens. Matter 19, 036104 (2007), 8pp

    Article  ADS  Google Scholar 

  54. S.R. Smith, K.R. Foster, Phys. Med. Biol. 30(9), 965 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enis Tuncer.

Additional information

The research was sponsored by three different sources: (i) the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 (D06-100), (ii) by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, Superconductivity Program for Electric Power Systems, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC, and (iii) by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuncer, E., Rondinone, A.J., Woodward, J. et al. Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics. Appl. Phys. A 94, 843–852 (2009). https://doi.org/10.1007/s00339-008-4881-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4881-8

PACS

Navigation