Skip to main content

Nanodielectrics: The Role of Structure in Determining Electrical Properties

  • Chapter
  • First Online:
Controlling the Morphology of Polymers
  • 1009 Accesses

Abstract

The secure supply of electrical energy is a key element in the success of both mature and developing economies. All electrical systems rely on insulation and, while the primary purpose of this is electrical, increasingly, insulation systems are also required to meet a range of other performance criteria. It is this need for multifunctional systems that underpins the current interest in dielectric nanocomposites - nanodielectrics. This chapter considers the structure and properties of one class of conventional nanocomposite, where a nanoscale inorganic filler is dispersed within a polymeric host. Such systems are then contrasted with alternative strategies by which molecular self-assembly can be used to generate morphologically controlled polymers, which exhibit useful combinations of properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andritsch T (2010) Epoxy based nanocomposites for high voltage DC applications. Ph.D. Thesis, University of Delft

    Google Scholar 

  • Anglhuber M, Kindersberger J (2012) Quantification of surface erosion and microscopic analysis of particle distribution in polymer nanocomposites. IEEE Trans Diel Electr Insul 19:408–413

    Article  CAS  Google Scholar 

  • Berman R (1976) Thermal conduction in solids. Clarendon Press, Oxford

    Google Scholar 

  • Dodd SJ, Champion JV, Zhao Y, Vaughan AS, Sutton SJ, Swingler SG (2003) Influence of morphology on electrical treeing in polyethylene blends. IEE Proc Sci Meas Technol 150:58–64

    Article  CAS  Google Scholar 

  • Drozdov AD (2007) A model for thermal degradation of hybrid nanocomposites. Eur Polym J 43:1681–1690

    Article  CAS  Google Scholar 

  • Fréchette MF, Larocque RY, Trudeau M, Veillette R, Rioux R, Pélissou S, Besner S, Javan M, Cole K, Ton That M-T, Desgagnés D, Castellon J, Agnel S, Toureille A, Platbrood G (2008) Nanostructured polymer microcomposites: a distinct class of insulating materials. IEEE Trans Diel Electr Insul 15:90–105

    Article  Google Scholar 

  • Green CD, Vaughan AS, Mitchell GR, Liu T (2008) Structure property relationships in polyethylene/montmorillonite nanodielectrics. IEEE Trans Diel Electr Insul 15:134–143

    Article  CAS  Google Scholar 

  • Green CD, Vaughan AS, Stevens GC, Sutton SJ, Geussens T, Fairhurst MJ (2013) Recyclable power cable comprising a blend of slow-crystallized polyethylenes. IEEE Trans Diel Electr Insul 20:1–9

    Article  CAS  Google Scholar 

  • Hammerton I (1997) Recent developments in epoxy resins (Rapra Review Reports). Smithers Rapra Technology, Shrewsbury

    Google Scholar 

  • Hong JI, Schadler LS, Siegel RW, Martensson E (2003) Rescaled electrical properties of ZnO/low density polyethylene nanocomposites. Appl Phys Lett 82:1956–1958

    Article  CAS  Google Scholar 

  • Hosier IL, Vaughan AS, Swingler SG (1997) Structure property relationships in polyethylene blends: the effect of morphology on electrical breakdown strength. J Mater Sci 32:4523–4531

    Article  CAS  Google Scholar 

  • Hosier IL, Vaughan AS, Swingler SG (2000) On the effects of morphology and molecular composition on the electrical strength of polyethylene blends. J Polym Sci B Polym Phys 38:2309–2322

    Article  CAS  Google Scholar 

  • Hosier IL, Vaughan AS, Swingler SG (2011) An investigation of the potential of polypropylene and its blends for use in recyclable high voltage cable insulation systems. J Mater Sci 46:4058–4070

    Article  CAS  Google Scholar 

  • Hoyos M, Garcia H, Navarro R, Dardano A, Ratto A, Guastavino F, Tiemblo P (2008) Electrical strength in ramp voltage AC tests of LDPE and its nanocomposites with silica and fibrous and laminar silicates. J Polym Sci B Polym Phys 46:1301–1311

    Article  CAS  Google Scholar 

  • Hui S, Chaki TK, Chattopadhyay S (2010) Dielectric properties of EVA/LDPE TPE system: effect of nano-silica and controlled irradiation. Polym Eng Sci 50:730–738

    Article  CAS  Google Scholar 

  • Iyer G, Gorur RS, Krivda A (2012) Corona resistance of epoxy nanocomposites: experimental results and modeling. IEEE Trans Diel Electr Insul 19:118–125

    Article  CAS  Google Scholar 

  • Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  • Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J (2002) Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol Rapid Commun 23:761–765

    Article  CAS  Google Scholar 

  • Kochetov R, Andritsch T, Morshuis PHF, Smit JJ (2012) Anomalous behaviour of the dielectric spectroscopy response of nanocomposites. IEEE Trans Diel Electr Insul 19:107–117

    Article  CAS  Google Scholar 

  • Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189

    Article  CAS  Google Scholar 

  • Kolesov SN (1980) The influence of morphology on the electric strength of polymer insulation. IEEE Trans Electr Insul 15:382–388

    Article  Google Scholar 

  • Kosmidou TV, Vatalis AS, Delides CG, Logakis E, Pissis P, Papanicolaou GC (2012) Structural, mechanical and electrical characterization of epoxy-amine/carbon black nanocomposites. Express Polym Lett 2:364–372

    Article  Google Scholar 

  • Kozako M, Fuse N, Ohki Y, Okamoto T, Tanaka T (2004) Surface degradation of polyamide nanocomposites caused by partial discharges using IEC (b) electrodes. IEEE Trans Diel Electr Insul 11:833–839

    Article  CAS  Google Scholar 

  • Kremer F (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Book  Google Scholar 

  • Lau KY, Vaughan AS, Chen G, Hosier IL, Holt AF (2013) On the dielectric response of silica-based polyethylene nanocomposites. J Phys D Appl Phys 46:095303

    Article  Google Scholar 

  • Lewis TJ (1994) Nanometric dielectrics. IEEE Trans Diel Electr Insul 1:812–825

    Article  CAS  Google Scholar 

  • Lewis TJ (2004) Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans Dielectr Electr Insul 11:739–753

    Article  CAS  Google Scholar 

  • Lewis TJ (2005) Interfaces: nanometric dielectrics. J Phys D Appl Phys 38:202–212

    Article  CAS  Google Scholar 

  • Li S, Yin G, Chen G, Li J, Bai S, Zhong L, Zhang Y, Lei Q (2010) Short-term breakdown and long-term failure in nanodielectrics: a review. IEEE Trans Diel Electr Insul 17:1523–1535

    Article  CAS  Google Scholar 

  • Liu J, Gao Y, Cao D, Zhang L, Guo Z (2011) Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation. Langmuir 27:7926–7933

    Article  CAS  Google Scholar 

  • Ma D, Hugener TA, Siegel RW, Christerson A, Martenson E, Önneby C, Schadler LS (2005) Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites. Nanotechnology 16:724–731

    Article  CAS  Google Scholar 

  • Maity P, Gupta N, Parameswaran V, Basu S (2010) On the size and dielectric properties of the interphase in epoxy-alumina nanocomposite. IEEE Trans Diel Electr Insul 17:1665–1675

    Article  CAS  Google Scholar 

  • Miwa Y, Drews AR, Schlick S (2008) Unique structure and dynamics of poly(ethylene oxide) in layered silicate nanocomposites: accelerated segmental mobility revealed by simulating ESR spectra of spin-labels, XRD, FTIR, and DSC. Macromolecules 41:4701–4708

    Article  CAS  Google Scholar 

  • Morshuis PHF, Kreuger FH, Leufkens PP (1988) The effect of different types of inclusions on PE cable life. IEEE Trans Electr Insul 23:1051–1055

    Article  CAS  Google Scholar 

  • Myroshnychenko V, Brosseau C (2005) Finite-element modeling method for the prediction of the complex effective permittivity of two-phase random statistically isotropic heterostructures. J Appl Phys 97:044101

    Article  Google Scholar 

  • Okuzumi S, Murakami Y, Nagao M, Sekiguch Y, Reddy CC, Murata Y (2008) DC breakdown strength and conduction current of MgO/LDPE composite influenced by filler size. Annual Report CEIDP, pp 689–692

    Google Scholar 

  • Progelhof RC, Throne JL, Ruetsch RR (1976) Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 76:615–626

    Article  Google Scholar 

  • Raetzke S, Kindersberger J (2010) Role of interphase on the resistance to high-voltage arcing on tracking and erosion of silicone/SiO2 nanocomposites. IEEE Trans Diel Electr Insul 17:607–614

    Article  CAS  Google Scholar 

  • Ramirez I, Jayaram S, Cherney EA (2010) Analysis of temperature profiles and protective mechanism against dry-band arcing in silicone rubber nanocomposites. IEEE Trans Diel Electr Insul 17:597–606

    Article  CAS  Google Scholar 

  • Ramirez-Vargas E, Sanchez-Valdes S, Parra-Tabla O, Castaneda-Gutierrez S, Mendez-Nonell J, Ramos-deValle LF, Lopez-Leon A, Lujan-Acosta R (2012) Structural characterization of LDPE/EVA blends containing nanoclay-flame retardant combinations. J Appl Polym Sci 123:1125–1136

    Article  CAS  Google Scholar 

  • Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, Zenger W (2005) Polymer nanocomposite dielectrics—the role of the interface. IEEE Trans Diel Electr Insul 12:629–643

    Article  CAS  Google Scholar 

  • Roy M, Nelson JK, MacCrone RK, Schadler LS (2007) Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. J Mater Sci 42:3789–3799

    Article  CAS  Google Scholar 

  • Saccani A, Motori A, Patuelli F, Montanari GC (2007) Thermal endurance evaluation of isotactic poly(propylene) based nanocomposites by short-term analytical methods. IEEE Trans Diel Electr Insul 14:689–695

    Article  CAS  Google Scholar 

  • Srisuwan S, Thongyai S, Praserthdam P (2010) Synthesis and characterization of low-dielectric photosensitive polyimide/silica hybrid materials. J Appl Polym Sci 117:2422–2427

    Article  CAS  Google Scholar 

  • Tagam N, Okada M, Hira N, Ohki Y, Tanaka T, Imai T, Harada M, Ochi M (2008) Dielectric properties of epoxy/clay nanocomposites—effects of curing agent and clay dispersion method. IEEE Trans Diel Electr Insul 15:24–32

    Article  Google Scholar 

  • Takala M, Ranta H, Nevalainen P, Pakonen P, Pelto J, Karttunen M, Virtanen S, Koivu V, Pettersson M, Sonerud B, Kannus K (2010) Dielectric properties and partial discharge endurance of polypropylene-silica nanocomposite. IEEE Trans Diel Electr Insul 17:1259–1267

    Article  CAS  Google Scholar 

  • Tanaka T, Kozako M, Fuse N, Ohki Y (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Diel Electr Insul 12:669–681

    Article  CAS  Google Scholar 

  • Vaughan AS, Swingler SG, Zhang Y (2006) Polyethylene nanodielectrics: the influence of nanoclays on structure formation and dielectric breakdown. Trans IEE Jpn 126:1057–1063

    Google Scholar 

  • Venkatesulu B, Thomas MJ (2010) Erosion resistance of alumina-filled silicone rubber nanocomposites. IEEE Trans Diel Electr Insul 17:615–624

    Article  CAS  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech Trans ASME 18:293–297

    Google Scholar 

  • Xue Y-H, Quan W, Qu F-H, Liu H (2015) Conformation of polydispersed chains grafted on nanoparticles. Mol Simul 41:298–310

    Article  CAS  Google Scholar 

  • Zanetti M, Camino G, Reichert P, Mulhaupt R (2001) Thermal behaviour of poly(propylene) layered silicate nanocomposites. Macromol Rapid Commun 22:176–180

    Article  CAS  Google Scholar 

  • Zhang C, Stevens GC (2008) The dielectric response of polar and non-polar nanodielectrics. IEEE Trans Diel Electr Insul 15:606–617

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alun S. Vaughan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vaughan, A.S. (2016). Nanodielectrics: The Role of Structure in Determining Electrical Properties. In: Mitchell, G., Tojeira, A. (eds) Controlling the Morphology of Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39322-3_9

Download citation

Publish with us

Policies and ethics