Skip to main content
Log in

Size and density control of silicon oxide nanowires by rapid thermal annealing and their growth mechanism

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we demonstrate a fast approach to grow SiO2 nanowires by rapid thermal annealing (RTA). The material characteristics of SiO2 nanowires are investigated by field emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field (HAADF) imaging, electron energy loss spectroscopy (EELS), and energy-filtered TEM (EFTEM). The HAADF images show that the wire tip is predominantly composed of Pt with brighter contrast, while the elemental mappings in EFTEM and EELS spectra reveal that the wire consists of Si and O elements. The SiO2 nanowires are amorphous with featureless contrast in HRTEM images after RTA at 900°C. Furthermore, the nanowire length and diameter are found to be dependent on the initial Pt film thickness. It is suggested that a high SiO2 growth rate of >1 μm/min can be achieved by RTA, showing a promising way to enable large-area fabrication of nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    Article  ADS  Google Scholar 

  2. Y. Wu, P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)

    Article  Google Scholar 

  3. A.I. Persson, M.W. Larsson, S. Stenström, B.J. Ohlsson, L. Samuelson, L.R. Wallenberg, Nat. Mater. 3, 677 (2004)

    Article  ADS  Google Scholar 

  4. S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Science 316, 729 (2007)

    Article  ADS  Google Scholar 

  5. W.S. Shi, Y.F. Zheng, N. Wang, C.-S. Lee, S.-T. Lee, Adv. Mater. 13, 591 (2001)

    Article  Google Scholar 

  6. J. Noborisaka, J. Motohisa, T. Fukui, Appl. Phys. Lett. 86, 213102 (2005)

    Article  ADS  Google Scholar 

  7. N.G. Shang, U. Vetter, I. Gerhards, H. Hofsäss, C. Ronning, M. Seibt, Nanotechnology 17, 3215 (2006)

    Article  ADS  Google Scholar 

  8. J.Q. Hu, Y. Jiang, X.M. Meng, C.S. Lee, S.T. Lee, Chem. Phys. Lett. 367, 339 (2003)

    Article  ADS  Google Scholar 

  9. D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, S.Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)

    Article  ADS  Google Scholar 

  10. Y. Hao, G. Meng, C. Ye, L. Zhang, Appl. Phys. Lett. 87, 033106 (2005)

    Article  ADS  Google Scholar 

  11. X.C. Wu, W.H. Song, K.Y. Wang, T. Hu, B. Zhao, Y.P. Sun, J.J. Du, Chem. Phys. Lett. 336, 53 (2001)

    Article  ADS  Google Scholar 

  12. Y.W. Wang, C.H. Liang, G.W. Meng, X.S. Peng, L.D. Zhang, J. Mater. Chem. 12, 651 (2002)

    Article  Google Scholar 

  13. Z.Y. Qui, H.W. Bing, H.W. Kuang, M. Terrones, N. Grobert, T. Karali, H. Terrones, J.P. Hare, P.D. Townsend, H.W. Kroto, D.R.M. Walton, Adv. Mater. 11, 844 (1999)

    Article  Google Scholar 

  14. Z.W. Pan, Z.R. Dai, C. Ma, Z.L. Wang, J. Am. Chem. Soc. 124, 1817 (2002)

    Article  Google Scholar 

  15. Z.W. Pan, S. Dai, D.B. Beach, D.H. Lowndes, Nano Lett. 3, 1279 (2003)

    Article  Google Scholar 

  16. X.M. Cai, A.B. Djurišić, M.H. Xie, J. Appl. Phys. 98, 074313 (2005)

    Article  ADS  Google Scholar 

  17. H.F. Zhang, C.M. Wang, E.C. Buck, L.S. Wang, Nano Lett. 3, 577 (2003)

    Article  Google Scholar 

  18. Y.-Q. Zhu, W.-K. Hsu, M. Terrones, N. Grobert, W.-B. Hu, J.P. Hare, H.W. Kroto, D.R.M. Walton, Chem. Mater. 11, 2709 (1999)

    Article  Google Scholar 

  19. P. Wu, X. Zou, L. Chi, Q. Li, T. Xiao, Nanotechnology 18, 125601 (2007)

    Article  ADS  Google Scholar 

  20. J.L. Elechiguerra, J.A. Manriquez, M.J. Yacaman, Appl. Phys. A 79, 461 (2004)

    Article  ADS  Google Scholar 

  21. Z. Zhang, B.Q. Wei, P.M. Ajayan, J. Phys. Condens. Matter 14, L511 (2002)

    Article  ADS  Google Scholar 

  22. S.H. Sun, G.W. Meng, M.G. Zhang, Y.T. Tian, T. Xie, L.D. Zhang, Solid State Commun. 128, 287 (2003)

    Article  ADS  Google Scholar 

  23. I. Aharonovich, S. Tamir, Y. Lifshitz, Nanotechnology 19, 065608 (2008)

    Article  ADS  Google Scholar 

  24. D.K. Sood, P.K. Sekhar, S. Bhansali, Appl. Phys. Lett. 88, 143110 (2006)

    Article  ADS  Google Scholar 

  25. K.-H. Lee, H.S. Yang, K.H. Baik, J. Bang, R.R. Vanfleet, W. Sigmund, Chem. Phys. Lett. 383, 380 (2004)

    Article  ADS  Google Scholar 

  26. C. Deininger et al., in Energy-filtering Transmission Electron Microscopy, ed. by L. Reimer, P.W. Hawkes (Springer, Berlin, 1995)

    Google Scholar 

  27. B. Predel, in Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, ed. by O. Madelung (Springer, Berlin, 1991)

    Google Scholar 

  28. G. Chen, J. Heat Transf. 118, 539 (1996)

    Article  Google Scholar 

  29. A.M. Morales, C.M. Lieber, Science 279, 208 (1998)

    Article  ADS  Google Scholar 

  30. S.J. Pennycook, D.E. Jesson, Phys. Rev. Lett. 64, 938 (1990)

    Article  ADS  Google Scholar 

  31. S. Hillyard, J. Silcox, Ultramicroscopy 58, 6 (1995)

    Article  Google Scholar 

  32. K. Schulmeister, W. Mader, J. Non-Cryst. Solids 320, 143 (2003)

    Article  ADS  Google Scholar 

  33. N. Wang, Y.H. Tang, Y.F. Zhang, C.S. Lee, I. Bello, S.T. Lee, Chem. Phys. Lett. 299, 237 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Sheng Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, YS., Wang, JL., Liou, SC. et al. Size and density control of silicon oxide nanowires by rapid thermal annealing and their growth mechanism. Appl. Phys. A 94, 357–363 (2009). https://doi.org/10.1007/s00339-008-4806-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4806-6

PACS

Navigation