Skip to main content
Log in

Synthesis and morphology control of diluted Si nanowire arrays by metal-assisted chemical etching and thermal oxidation based on nanosphere lithography

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Well-separated silicon nanowires with good periodicity and lower porosity density are fabricated using thermal oxidization and HF acid etching after forming silicon nanowire (Si NW) arrays with high diameter-to-pitch ratio by metal-assisted chemical etching based on nanosphere lithography. The factors responsible for the special morphology features of Si NW during the oxidation process are understood by thermal oxidation process simulation. A high-temperature oxidation process is proposed to facilitate the alleviation of necking and the acceleration of oxidation of NWs. Furthermore, to reduce the tapering trend, an oxygen diffuse barrier layer is proposed to be pre-deposited on the top of Si NWs before the high-temperature thermal oxidation treatment. By using these methods, a periodic array of Si NWs with a large pitch and small diameter is created. This approach can substantially reduce porosities and surface defects on the outer surface of Si NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wagner RS, Ellis WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4:89–90

    Article  Google Scholar 

  2. Fu YQ, Colli A, Fasoli A, Luo JK, Flewitt AJ, Ferrari AC, Milne WI (2009) Deep reactive ion etching as a tool for nanostructure fabrication. J Vac Sci Technol B 27:1520–1526

    Article  Google Scholar 

  3. Hobbs RG, Petkov N, Holmes JD (2012) Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem Mater 24:1975–1991

    Article  Google Scholar 

  4. Huang Z, Geyer N, Werner P, de Boor J, Gösele U (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23:285–308

    Article  Google Scholar 

  5. Dong Won C, Tae Kyoung K, Duyoung C, Elizabeth C, Young Jin K, Jae Cheol P, Sungho J, Renkun C (2016) Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching. Nanotechnology 27:455302

    Article  Google Scholar 

  6. Kong L, Dasgupta B, Ren Y, Mohseni PK, Hong M, Li X, Chim WK, Chiam SY (2016) Evidences for redox reaction driven charge transfer and mass transport in metal-assisted chemical etching of silicon. Sci Rep 6:36582

    Article  Google Scholar 

  7. Liu K, Qu S, Zhang X, Wang Z (2013) Anisotropic characteristics and morphological control of silicon nanowires fabricated by metal-assisted chemical etching. J Mater Sci 48:1755–1762. doi:10.1007/s10853-012-6936-7

    Article  Google Scholar 

  8. Yeom J, Ratchford D, Field CR, Brintlinger TH, Pehrsson PE (2014) Decoupling diameter and pitch in silicon nanowire arrays made by metal-assisted chemical etching. Adv Funct Mater 24:106–116

    Article  Google Scholar 

  9. Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater 19:744–748

    Article  Google Scholar 

  10. Peng K, Zhang M, Lu A, Wong N-B, Zhang R, Lee S-T (2007) Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching. Appl Phys Lett 90:163123

    Article  Google Scholar 

  11. Cheung CL, Nikolić RJ, Reinhardt CE, Wang TF (2006) Fabrication of nanopillars by nanosphere lithography. Nanotechnology 17:1339

    Article  Google Scholar 

  12. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    Article  Google Scholar 

  13. Seo K, Wober M, Steinvurzel P, Schonbrun E, Dan Y, Ellenbogen T, Crozier KB (2011) Multicolored vertical silicon nanowires. Nano Lett 11:1851–1856

    Article  Google Scholar 

  14. Wang Y, Schmidt V, Senz S, Gosele U (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1:186–189

    Article  Google Scholar 

  15. Morton KJ, Nieberg G, Bai S, Chou SY (2008) Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching. Nanotechnology 19:345301

    Article  Google Scholar 

  16. Su S, Lin L, Li Z, Feng J, Zhang Z (2013) The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays. Nanoscale Res Lett 8:1–7

    Article  Google Scholar 

  17. Nakamura J, Higuchi K, Maenaka K (2013) Vertical Si nanowire with ultra-high-aspect-ratio by combined top-down processing technique. Microsyst Technol 19:433–438

    Article  Google Scholar 

  18. Shi X, Kurstjens R, Vos I, Everaert J-L, Schaekers M (2011) Review of silicon nanowire oxidation. ECS Trans 34:535–540

    Article  Google Scholar 

  19. Kurstjens R, Vos I, Dross F, Poortmans J, Mertens R (2012) Thermal oxidation of a densely packed array of vertical Si nanowires. J Electrochem Soc 159:H300–H306

    Article  Google Scholar 

  20. Synopsys T (2010) Sentaurus Process User Guide, Version D-2010.03

  21. Coffin H, Bonafos C, Schamm S, Cherkashin N, Assayag GB, Claverie A, Respaud M, Dimitrakis P, Normand P (2006) Oxidation of Si nanocrystals fabricated by ultralow-energy ion implantation in thin SiO2 layers. J Appl Phys 99:044302

    Article  Google Scholar 

  22. Kao DB, McVittie JP, Nix WD, Saraswat KC (1988) Two-dimensional thermal oxidation of silicon. II. Modeling stress effects in wet oxides. IEEE Trans Electron Devices 35:25–37

    Article  Google Scholar 

  23. Egorkin AV, Kalinin SV (2014) Two-dimensional modeling the process of thermal oxidation of non-planar silicon structures in CMOS-circuits’ isolation. In: 15th International conference of young specialists on micro/nanotechnologies and electron devices (EDM), pp 61–66

  24. Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770–3778

    Article  Google Scholar 

  25. Gordon MJ, Baron T, Dhalluin F, Gentile P, Ferret P (2009) Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. Nano Lett 9:525–529

    Article  Google Scholar 

  26. Tang D-M, Ren C-L, Wang M-S, Wei X, Kawamoto N, Liu C, Bando Y, Mitome M, Fukata N, Golberg D (2012) Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett 12:1898–1904

    Article  Google Scholar 

  27. Büttner CC, Zacharias M (2006) Retarded oxidation of Si nanowires. Appl Phys Lett 89:263106

    Article  Google Scholar 

  28. Cui H, Wang CX, Yang GW (2008) Origin of self-limiting oxidation of Si nanowires. Nano Lett 8:2731–2737

    Article  Google Scholar 

  29. Krzeminski CD, Han X-L, Larrieu G (2012) Understanding of the retarded oxidation effects in silicon nanostructures. Appl Phys Lett 100:263111

    Article  Google Scholar 

  30. EerNisse EP (1977) Viscous flow of thermal SiO2. Appl Phys Lett 30:290–293

    Article  Google Scholar 

  31. Stan G, Krylyuk S, Davydov AV, Cook RF (2010) Compressive stress effect on the radial elastic modulus of oxidized Si nanowires. Nano Lett 10:2031–2037

    Article  Google Scholar 

  32. Weber ER (1983) Transition metals in silicon. Appl Phys A 30:1–22

    Article  Google Scholar 

  33. Istratov AA, Flink C, Hieslmair H, McHugo SA, Weber ER (2000) Diffusion, solubility and gettering of copper in silicon. Mater Sci Eng B 72:99–104

    Article  Google Scholar 

  34. Luping L, Yin F, Cheng X, Yang Z, Nanzhi Z, Peng J, Kirk JZ (2016) Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation. Nanotechnology 27:165303

    Article  Google Scholar 

  35. Titova LV, Hoang TB, Jackson HE, Smith LM, Yarrison-Rice JM, Kim Y, Joyce HJ, Tan HH, Jagadish C (2006) Temperature dependence of photoluminescence from single core-shell GaAs–AlGaAs nanowires. Appl Phys Lett 89:173126

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51472247, 51671182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Li, X., Shi, T. et al. Synthesis and morphology control of diluted Si nanowire arrays by metal-assisted chemical etching and thermal oxidation based on nanosphere lithography. J Mater Sci 52, 6449–6458 (2017). https://doi.org/10.1007/s10853-017-0880-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0880-5

Keywords

Navigation