Skip to main content
Log in

Photothermal hydrogen sensor: the technique, experimental process, and physicochemical analysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The kinetics of hydrogen adsorption and desorption on palladium thin films was studied via photomodulated thermoreflectance measurements. The subsequent analysis based on a Langmuirian isothermal model supports dissociative adsorption of hydrogen on palladium followed by molecular desorption. Furthermore, the rate constants of adsorption and desorption were determined and their values are discussed. The response and recovery times of the sensor were measured and their dependence on hydrogen concentration is also explored and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mandelis, C. Christofides, Physics, Chemistry and Technology of Solid State Gas Sensor Devices. Chem. Anal., vol. 125 (Wiley Interscience, New York, 1993)

    Google Scholar 

  2. C. Christofides, A. Mandelis, J. Appl. Phys. 67, 2815 (1989)

    Article  ADS  Google Scholar 

  3. L. Schlapbach, A. Züttel, P. Gröning, O. Gröning, P. Aebi, Appl. Phys. A 72, 245 (2001)

    Article  ADS  Google Scholar 

  4. M.A. Butler, D.S. Ginley, J. Appl. Phys. 64, 3706 (1988)

    Article  ADS  Google Scholar 

  5. K. Kalli, A. Othonos, C. Christofides, J. Appl. Phys. 91, 3829 (2002)

    Article  ADS  Google Scholar 

  6. A. Othonos, C. Christofides, Appl. Phys. Lett. 82, 904 (2003)

    Article  ADS  Google Scholar 

  7. A. Vitkin, C. Christofides, A. Mandelis, J. Appl. Phys. 67, 2822 (1990)

    Article  ADS  Google Scholar 

  8. I. Lundström, Sens. Actuators A 56, 75 (1996)

    Article  Google Scholar 

  9. A. Salomonsson, M. Eriksson, H. Dannetun, J. Appl. Phys. 98, 014505 (2005)

    Article  ADS  Google Scholar 

  10. I. Lundström, M.S. Shivaraman, C. Svensson, Surf. Sci. 64, 497 (1977)

    Article  ADS  Google Scholar 

  11. I. Lundström, Sens. Actuators 1, 403 (1981)

    Article  Google Scholar 

  12. A. Groß, Surf. Sci. Rep. 32, 291 (1998)

    Article  ADS  Google Scholar 

  13. C.-W. Hung, H.-L. Lin, H.-I. Chen, Y.-Y. Tsai, P.-H. Lai, S.-I. Fu, H.-M. Chuang, W.-C. Liu, Sens. Actuators B 122, 81 (2007)

    Article  Google Scholar 

  14. C. Christofides, A. Mandelis, J. Rawski, S. Rehm, Rev. Sci. Instrum. 64, 3563 (1993)

    Article  ADS  Google Scholar 

  15. C. Christofides, A. Mandelis, J. Appl. Phys. 68, R1 (1990)

    Article  ADS  Google Scholar 

  16. C. Christofides, A. Mandelis, J. Appl. Phys. 66, 3986 (1989)

    Article  ADS  Google Scholar 

  17. C. Wang, A. Mandelis, J.A. Garcia, Sens. Actuators B 60, 228 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Christofides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demetriou, C., Nestoros, M. & Christofides, C. Photothermal hydrogen sensor: the technique, experimental process, and physicochemical analysis. Appl. Phys. A 92, 651–658 (2008). https://doi.org/10.1007/s00339-008-4596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4596-x

PACS

Navigation