Skip to main content
Log in

Simulation of laser generated ultrasound with application to defect detection

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser generated ultrasound holds substantial promise for use as a tool for defect detection in remote inspection thanks to its ability to produce frequencies in the MHz range, enabling fine spatial resolution of defects. Despite the potential impact of laser generated ultrasound in many areas of science and industry, robust tools for studying the phenomenon are lacking and thus limit the design and optimization of non-destructive testing and evaluation techniques. The laser generated ultrasound propagation in complex structures is an intricate phenomenon and is extremely hard to analyze. Only simple geometries can be studied analytically. Numerical techniques found in the literature have proved to be limited in their applicability, by the frequencies in the MHz range and very short wavelengths. The objective of this research is to prove that by using an explicit integration rule together with diagonal element mass matrices, instead of the almost universally adopted implicit integration rule to integrate the equations of motion in a dynamic analysis, it is possible to efficiently and accurately solve ultrasound wave propagation problems with frequencies in the MHz range travelling in relatively large bodies. Presented results on NDE testing of rails demonstrate that the proposed FE technique can provide a valuable tool for studying the laser generated ultrasound propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Bhardwaj, Non-contact Ultrasound, the Last Frontier in Non-destructive Testing and Evaluation, Encyclopedia of Smart Materials (Wiley, New York, 2001)

  2. E. Blomme, D. Bulcaen, F. Declercq, Ultrasonics 40, 153 (2002)

    Article  Google Scholar 

  3. C.B. Scruby, L.E. Drain, Laser Ultrasonics, Techniques and Applications (Adam Hilger, London, 1990)

    Google Scholar 

  4. S. Kenderian, B.B. Djordjevic, D. Cerniglia, G. Garcia, Insight 48, 336 (2006)

  5. S. Kenderian, D. Cerniglia, B.B. Djordjevic, R.E. Green Jr., Res. Nondestructive Eval. 16, 195 (2005)

    Google Scholar 

  6. R. White, J. Appl. Phys. 34, 3559 (1963)

    Article  ADS  Google Scholar 

  7. C.B. Scruby, R.J. Dewhurst, D.A. Hutchins, S.B. Palmer, J. Appl. Phys. 51, 6210 (1980)

    Article  ADS  Google Scholar 

  8. L.R.F. Rose, J. Acoust. Soc. Am. 75, 723 (1984)

    Article  MATH  ADS  Google Scholar 

  9. F.A. McDonald, Appl. Phys. Lett. 56, 230 (1990)

    Article  ADS  Google Scholar 

  10. L. Gavric, J. Sound Vib. 185, 531 (1995)

    Article  MATH  Google Scholar 

  11. F. Moser, L.J. Jacobs, J. Qu, NDT&E Internatl. 32, 225 (1999)

    Google Scholar 

  12. R. Sanderson, S. Smith, Insight 44, 359 (2002)

    Google Scholar 

  13. W. Hassan, W. Veronesi, Ultrasonics 41, 41 (2003)

    Article  Google Scholar 

  14. A. Zerwer, M.A. Polak, J.C. Santamarina, J. Nondestructive Eval. 22, 2 (2003)

    Google Scholar 

  15. B. Xu, Z. Shen, X. Ni, J. Lu, J. Appl. Phys. 95, 2116 (2004)

    Article  ADS  Google Scholar 

  16. S. Zhou, P. Reynolds, R. Krause, T. Buma, M. Donnell, J.A. Hossack, Ultrasonics IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 51, 1178 (2004)

    Google Scholar 

  17. H. Jeong, M.C. Park, Res. Nondestructive Eval. 16, 1 (2005)

    Google Scholar 

  18. J. Wang, Z. Shen, B. Xu, X. Ni, J. Guan, J. Lu, Appl. Phys. A 84, 301 (2006)

    Article  ADS  Google Scholar 

  19. B. Xu, Z. Shen, J. Wang, X. Ni, J. Guan, J. Lu, J. Appl. Phys. 99, 33508 (2006)

    Article  Google Scholar 

  20. E. Glushkov, N. Glushkova, A. Ekhlakov, E. Shapar, Wave Motion 43, 458 (2006)

    Article  MathSciNet  Google Scholar 

  21. I. Bartoli, A. Marzania, F. Lanza di Scalea, E. Viola, J. Sound Vib. 295, 685 (2006)

    Article  ADS  Google Scholar 

  22. N. Terrien, D. Royer, F. Lepoutre, A. Deom, Ultrasonics 46, 251 (2007)

    Article  Google Scholar 

  23. R. Cook, D. Malkus, M. Plesha, Concepts and Applications of Finite Element Analysis (Wiley, New York, 1989)

    MATH  Google Scholar 

  24. G. Liu, J. Qu, J. Acoust. Soc. Am. 104, 1210 (1998)

    Article  ADS  Google Scholar 

  25. American Railway Engineering and Maintenance-of-Way Association, AREMA Manual for Railway Engineering (AREMA, Lanham, MD, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pantano.

Additional information

PACS

02.70.Dh; 43.35.+d; 42.62.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantano, A., Cerniglia, D. Simulation of laser generated ultrasound with application to defect detection. Appl. Phys. A 91, 521–528 (2008). https://doi.org/10.1007/s00339-008-4442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4442-1

Keywords

Navigation