Skip to main content
Log in

Effects of a self-assembled monolayer on the sliding friction and adhesion of an Au surface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The friction and adhesion mechanisms with and without a self-assembled monolayer (SAM) in nanotribology were studied using molecular dynamics (MD) simulation. The MD model consisted of two gold planes with and without n-hexadecanethiol SAM chemisorbed to the substrate, respectively. The molecular trajectories, tilt angles, normal forces, and frictional forces of the SAM and gold molecules were evaluated during the frictional and relaxation processes for various parameters, including the number of CH2 molecules, the interference magnitude, and whether or not the SAM lubricant was used. The various parameters are discussed with regard to frictional and adhesion forces, mechanisms, and molecular or atomic structural transitions. The stick–slip behavior of SAM chains can be completely attributed to the van der Waals forces of the chain/chain interaction. When the number of CH2 molecules was increased, the SAM chains appeared to have bigger tilt angles at deformation. The magnitude of the strain energy that was saved and relaxed is proportional to the elastic deformable extent of the SAM molecules. The frictional force was higher for long chain molecules. With shorter SAM molecules, the adhesion force behavior was more stable during the compression and relaxation processes. A surface coated with a SAM can increase nano-device lifetimes by avoiding interface effects like friction and adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kumar, G.M. Whitesides, Science 263, 60 (1994)

    Article  ADS  Google Scholar 

  2. U. Srinivasan, M.R. Houston, R.T. Howe, R. Maboudian, J. Microelectromech. Sys. 7, 252 (1998)

    Google Scholar 

  3. R. Maboudian, W.R. Ashurst, C. Carraro, Sens. Actuators 82, 219 (2000)

    Article  Google Scholar 

  4. N.S. Tambe, B. Bhushan, Nanotechnology 16, 1549 (2005)

    Article  Google Scholar 

  5. W.R. Ashurst, C. Yau, C. Carraro, C. Lee, G.J. Kluth, R.T. Howe, R. Maboudian, Sens. Actuators A 91, 239 (2001)

    Article  Google Scholar 

  6. L J. Guo, J. Phys. D Appl. Phys. 37, R123 (2004)

    Article  ADS  Google Scholar 

  7. B. Bhushan, H. Liu, Phys. Rev. B 63, 245412 (2001)

    Article  ADS  Google Scholar 

  8. E.W. van der Vegte, A. Subbontin, G. Hadziioannou, Langmuir 16, 3249 (2000)

    Article  Google Scholar 

  9. J. Hauman, M.L. Klein, J. Chem. Phys. 91, 15 (1989)

    Google Scholar 

  10. J. Hauman, M.L. Klein, J. Chem. Phys. 93, 7483 (1990)

    Article  ADS  Google Scholar 

  11. K.J. Tupper, D.W. Brenner, Langmuir 10, 2335 (1994)

    Article  Google Scholar 

  12. T. Ohzono, M. Fujihira, Phys. Rev. B 62, 17055 (2000)

    Article  ADS  Google Scholar 

  13. C.D. Wu, J.F. Lin, T.H. Fang, Comput. Mater. Sci. 39, 808 (2006)

    Article  Google Scholar 

  14. I.H. Sung, D.E. Kin, Appl. Phys. A 81, 109 (2005)

    Article  ADS  Google Scholar 

  15. Y. Leng, S. Jiang, J. Am. Chem. Soc. 124, 11764 (2002)

    Article  Google Scholar 

  16. T.H. Fang, C.I. Weng, Nanotechnology 11, 148 (2000)

    Article  ADS  Google Scholar 

  17. T.H. Fang, C.I. Weng, J.G. Chang, Surf. Sci. 501, 138 (2002)

    Article  ADS  Google Scholar 

  18. H.Y. Lai, P.H. Huang, T.H. Fang, Appl. Phys. A 86, 497 (2007)

    Article  ADS  Google Scholar 

  19. M.D. Porter, T.B. Bright, D.L. Allara, C.E.D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987)

    Article  Google Scholar 

  20. C.D. Bain, H.A. Biebuyck, G.M. Whitesides, Langmuir 5, 723 (1989)

    Article  Google Scholar 

  21. L. Zhang, Y. Leng, S. Jiang, Langmuir 19, 9742 (2003)

    Article  Google Scholar 

  22. M. Fujihira, T. Ohzono, Japan. J. Appl. Phys. 38, 3918 (1999)

    Article  ADS  Google Scholar 

  23. E. Barrena, S. Kopta, D.F. Ogletree, D.H. Charych, M. Salmeron, Phys. Rev. Lett. 82, 2880 (1999)

    Article  ADS  Google Scholar 

  24. A. Lia, D.H. Charych, M. Salmeron, J. Phys. Chem. B 101, 3800 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-F. Lin.

Additional information

PACS

52.65.Yy; 81.40.Pq; 81.16; 68.35.-p

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CD., Lin, JF., Fang, TH. et al. Effects of a self-assembled monolayer on the sliding friction and adhesion of an Au surface. Appl. Phys. A 91, 459–466 (2008). https://doi.org/10.1007/s00339-008-4431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4431-4

Keywords

Navigation